
A Polynomial-Time Custom Instruction

Identification Algorithm Based on

Dynamic Programming

Junwhan Ahn, Imyong Lee, and Kiyoung Choi

Design Automation Laboratory
Seoul National University

ASP-DAC 2011

1 / 25

Outline

Introduction

Problem Statement

Algorithm

Experiments and Results

Conclusion

2 / 25

Configurable Processor

Ready-made general-purpose processor with user-defined
instructions for specific applications

I More flexible and easier to design than ASICs

I Higher performance and lower power consumption than
GPP

Problem: How can we decide what to implement?

3 / 25

Configurable Processor

Nios II

ALU

Parameterized

Custom

Logic

Multi-Cycle

Combinatorial

Optional FIFO, Memory, and Other Logic

c

b

a

n

start

reset

clk_en

clk

data_b

data_a

result

+
-

<<
>>

&

data_a

data_b
result

out

stall

Custom Instruction Logic of Nios II Processor

3 / 25

Configurable Processor

Ready-made general-purpose processor with user-defined
instructions for specific applications

I More flexible and easier to design than ASICs

I Higher performance and lower power consumption than
GPP

Problem: How can we decide what to implement?

3 / 25

Custom Instruction Identification

Question
What is the best custom instruction for a specific application
under the given architectural constraints?

Best

I Performance improvement

Architectural constraints

I The number of inputs and outputs

I Types of operations that can be used in the custom
functional unit

4 / 25

Custom Instruction Identification

Question
What is the best custom instruction for a specific application
under the given architectural constraints?

Best

I Performance improvement

Architectural constraints

I The number of inputs and outputs

I Types of operations that can be used in the custom
functional unit

4 / 25

Custom Instruction Identification

Question
What is the best custom instruction for a specific application
under the given architectural constraints?

Best

I Performance improvement

Architectural constraints

I The number of inputs and outputs

I Types of operations that can be used in the custom
functional unit

4 / 25

Custom Instruction Identification

b = x + 1;

c = x - 1;

for (a = 0; a < 20; ++a) {

t = a + b;

u = a - c;

d = (t * u) & 0x000f;

e = (t * u) & 0x00f0;

f = (t * u) & 0x0f00;

g = (t * u) & 0xf000;

}

y = d + e + f + g;

CI Identification Flow

1. Select a kernel

2. Convert it into a DFG

3. Find the best CI

5 / 25

Custom Instruction Identification

a

+ -

b c

d e f g

& & & &

*

CI Identification Flow

1. Select a kernel

2. Convert it into a DFG

3. Find the best CI

5 / 25

Custom Instruction Identification

a

+ -

b c

d e f g

& & & &

*

CI Identification Flow

1. Select a kernel

2. Convert it into a DFG

3. Find the best CI

Basic properties of a cut:

I Inputs and outputs

I Convexity

5 / 25

Custom Instruction Identification

a

+ -

b c

d e f g

& & & &

*

CI Identification Flow

1. Select a kernel

2. Convert it into a DFG

3. Find the best CI

Basic properties of a cut:

I Inputs and outputs

I Convexity

5 / 25

Custom Instruction Identification

Formal definition of the problem is as follows:

Single Custom Instruction Identification
Given a graph G , find a convex cut S that maximizes M(S)
under the constraints |IN(S)| ≤ Nin and |OUT(S)| ≤ Nout.

I G : a DAG which denotes the data flow of a basic block

I S : a subgraph of G

I IN(S), OUT(S): inputs and outputs of a cut S

I M(S): user-defined function for evaluating a cut

6 / 25

Previous Works

Optimal solution with exponential time complexity

I Branch and bound with pruning (K.Atasu, DAC’03)

I Integer linear programming (K.Atasu, CODES+ISSS’05)

Problems

I Too much time is needed for large dataflow graphs.

7 / 25

Previous Works

Optimal solution with exponential time complexity

I Branch and bound with pruning (K.Atasu, DAC’03)

I Integer linear programming (K.Atasu, CODES+ISSS’05)

Problems

I Too much time is needed for large dataflow graphs.

7 / 25

Previous Works

Nonoptimal solution with lower time complexity

I Genetic algorithm (L.Pozzi, TCAD’06)

I Partitioning-based selection (L.Pozzi, TCAD’06)

I Cone union algorithm (P.Yu, DAC’04)

Problems

I The solution may not be optimal.

I Only connected cuts can be selected where disconnected
cuts give better performance improvement in general.

8 / 25

Previous Works

Nonoptimal solution with lower time complexity

I Genetic algorithm (L.Pozzi, TCAD’06)

I Partitioning-based selection (L.Pozzi, TCAD’06)

I Cone union algorithm (P.Yu, DAC’04)

Problems

I The solution may not be optimal.

I Only connected cuts can be selected where disconnected
cuts give better performance improvement in general.

8 / 25

Previous Works

Nonoptimal solution with lower time complexity

I Genetic algorithm (L.Pozzi, TCAD’06)

I Partitioning-based selection (L.Pozzi, TCAD’06)

I Cone union algorithm (P.Yu, DAC’04)

Problems

I The solution may not be optimal.

I Only connected cuts can be selected where disconnected
cuts give better performance improvement in general.

8 / 25

Our Approach

Top-down dynamic programming with single cut identification
algorithm (branch and bound with pruning)

I Solutions of subproblems are stored in a memoization
table

I The stored solution is used instead of enumeration if
avaliable

But, how can we guarantee that constraints are still satisfied
even if we use stored solutions?

9 / 25

Our Approach

Problem
How can we know that the cut is no
longer convex if we add the vertex 7 into
the cut?

Solution
Convexity constraint is violated when we
add a vertex that has a path to an input
which

1. is a follower vertex of S , or

2. has at least one includable ancestor
that is a follower vertex of S .

We call such inputs as watcher inputs.

a

7

b

3

c

6

de

12

4

5

10 / 25

Our Approach

Problem
How can we know that the cut is no
longer convex if we add the vertex 7 into
the cut?

Solution
Convexity constraint is violated when we
add a vertex that has a path to an input
which

1. is a follower vertex of S , or

2. has at least one includable ancestor
that is a follower vertex of S .

We call such inputs as watcher inputs.

a

7

b

3

c

6

de

12

4

5

10 / 25

Our Approach

Problem
How can we know that the cut is no
longer convex if we add the vertex 7 into
the cut?

Solution
Convexity constraint is violated when we
add a vertex that has a path to an input
which

1. is a follower vertex of S , or

2. has at least one includable ancestor
that is a follower vertex of S .

We call such inputs as watcher inputs.

a

7

b

3

c

6

de

12

4

5

10 / 25

Our Approach

Problem
How can we calculate |IN(S)| of the cut
S ′ = S ∪ {v} with properties of S?

Solution

|IN(S)| = |INw(S)|+ |INnw(S)|

a

7

b

3

c

6

de

12

4

5

11 / 25

Our Approach

Problem
How can we calculate |IN(S)| of the cut
S ′ = S ∪ {v} with properties of S?

Solution

|IN(S)| = |INw(S)|+ |INnw(S)|

a

7

b

3

c

6

de

12

4

5

11 / 25

Our Approach

Problem
How can we calculate |OUT(S)| of the
cut S ′ = S ∪ {v} with properties of S?

Solution
v is an output if and only if it has at
least one outside successor. We call an
input with no outside successor as a
dedicated input. Therefore,

|OUT(S ′)| =

{
|OUT(S)|+ 1 v /∈ INd(S)

|OUT(S)| otherwise

a

7

b

3

c

6

de

12

4

5

12 / 25

Our Approach

Problem
How can we calculate |OUT(S)| of the
cut S ′ = S ∪ {v} with properties of S?

Solution
v is an output if and only if it has at
least one outside successor. We call an
input with no outside successor as a
dedicated input. Therefore,

|OUT(S ′)| =

{
|OUT(S)|+ 1 v /∈ INd(S)

|OUT(S)| otherwise

a

7

b

3

c

6

de

12

4

5

12 / 25

Our Approach

Problem
How can we calculate dedicated inputs
of the cut S ′ = S ∪ {v} with properties
of S?

Solution
When the last successor of an input is
added to the cut, the input becomes
dedicated unless it already has at least
one outside successor (permanently
undedicated inputs).

a

7

b

3

c

6

de

12

4

5

13 / 25

Our Approach

Problem
How can we calculate dedicated inputs
of the cut S ′ = S ∪ {v} with properties
of S?

Solution
When the last successor of an input is
added to the cut, the input becomes
dedicated unless it already has at least
one outside successor (permanently
undedicated inputs).

a

7

b

3

c

6

de

12

4

5

13 / 25

Our Approach

In short, I/O and convexity constraints can be checked with
following properties when we inserting a follower vertex v to
the convex cut S . (a representative tuple)

t(S) = (INw(S), |INnw(S)|, INpu(S), INd(S), |OUT(S)|, vlast(S))

Moreover, we found a function F for the following relation:

t(S ∪ {v}) = F (t(S))

14 / 25

Our Approach

Therefore, we can conclude the following.

Corollary
When constructing a bigger convex cut S ′ = S ∪ {v} from a
convex cut S by adding a vertex in the pre-determined
traversal order, the constraint on the number of inputs,
outputs, and convexity of S ′ can be fully determined by only
the following properties: INw(S), |INnw(S)|, INpu(S), INd(S),
|OUT(S)|, and vlast(S).

Thus, we can safely use stored solutions for all cuts with same
representative tuple.

15 / 25

Our Approach

For S1 = {1, 5},

INw(S1) = {6, 7} |INnw(S1)| = 0

INd(S1) = {6, 7} INpu(S1) = ∅
|OUT(S1)| = 2 vlast(S1) = 5

If the best cut is S ′
1 = {1, 5, 6, 7}, store

S ′
1 − S1 into the memoization table with

a key k , where

k = (INw(S1), |INnw(S1)|, INd(S1),

INpu(S1), |OUT(S1)|, vlast(S1))

a

6 7

b c

d e f g

1 2 3 4

5

16 / 25

Our Approach

For S1 = {1, 5},

INw(S1) = {6, 7} |INnw(S1)| = 0

INd(S1) = {6, 7} INpu(S1) = ∅
|OUT(S1)| = 2 vlast(S1) = 5

If the best cut is S ′
1 = {1, 5, 6, 7}, store

S ′
1 − S1 into the memoization table with

a key k , where

k = (INw(S1), |INnw(S1)|, INd(S1),

INpu(S1), |OUT(S1)|, vlast(S1))

a

6 7

b c

d e f g

1 2 3 4

5

16 / 25

Our Approach

For S1 = {1, 5},

INw(S1) = {6, 7} |INnw(S1)| = 0

INd(S1) = {6, 7} INpu(S1) = ∅
|OUT(S1)| = 2 vlast(S1) = 5

If the best cut is S ′
1 = {1, 5, 6, 7}, store

S ′
1 − S1 into the memoization table with

a key k , where

k = (INw(S1), |INnw(S1)|, INd(S1),

INpu(S1), |OUT(S1)|, vlast(S1))

a

6 7

b c

d e f g

1 2 3 4

5

16 / 25

Our Approach

For S1 = {1, 5},

INw(S1) = {6, 7} |INnw(S1)| = 0

INd(S1) = {6, 7} INpu(S1) = ∅
|OUT(S1)| = 2 vlast(S1) = 5

If the best cut is S ′
1 = {1, 5, 6, 7}, store

S ′
1 − S1 into the memoization table with

a key k , where

k = (INw(S1), |INnw(S1)|, INd(S1),

INpu(S1), |OUT(S1)|, vlast(S1))

a

6 7

b c

d e f g

1 2 3 4

5

16 / 25

Our Approach

For S1 = {1, 5},

INw(S1) = {6, 7} |INnw(S1)| = 0

INd(S1) = {6, 7} INpu(S1) = ∅
|OUT(S1)| = 2 vlast(S1) = 5

If the best cut is S ′
1 = {1, 5, 6, 7}, store

S ′
1 − S1 into the memoization table with

a key k , where

k = (INw(S1), |INnw(S1)|, INd(S1),

INpu(S1), |OUT(S1)|, vlast(S1))

a

6 7

b c

d e f g

1 2 3 4

5

16 / 25

Our Approach

For S2 = {2, 5},

INw(S1) = {6, 7} |INnw(S1)| = 0

INd(S1) = {6, 7} INpu(S1) = ∅
|OUT(S1)| = 2 vlast(S1) = 5

We can use the stored solution from S1

due to the corollary. Therefore,

S ′
2 = S2 ∪ {6, 7} = {2, 5, 6, 7}

a

6 7

b c

d e f g

1 2 3 4

5

17 / 25

Our Approach

For S2 = {2, 5},

INw(S1) = {6, 7} |INnw(S1)| = 0

INd(S1) = {6, 7} INpu(S1) = ∅
|OUT(S1)| = 2 vlast(S1) = 5

We can use the stored solution from S1

due to the corollary. Therefore,

S ′
2 = S2 ∪ {6, 7} = {2, 5, 6, 7}

a

6 7

b c

d e f g

1 2 3 4

5

17 / 25

Our Approach

Branch-and-bound search can be visualized as a binary tree.

1. Total search space

2. Pruned by K. Atasu’s algorithm (with Nin = 8, Nout = 4)

3. Used memoized solutions (our approach)

18 / 25

Our Approach

Branch-and-bound search can be visualized as a binary tree.

1. Total search space

2. Pruned by K. Atasu’s algorithm (with Nin = 8, Nout = 4)

3. Used memoized solutions (our approach)

18 / 25

Our Approach

Branch-and-bound search can be visualized as a binary tree.

1. Total search space

2. Pruned by K. Atasu’s algorithm (with Nin = 8, Nout = 4)

3. Used memoized solutions (our approach)

18 / 25

Our Approach

How about optimality?

Theorem
The single cut identification problem has optimal substructure
if M(S ∪ S ′) = M(S) + M(S ′).

Therefore, the algorithm is optimal for M(S) =
∑

v∈S sv .
However,

M(S) =
∑
v∈S

sv − dLe

is used in general. In this case, the proposed algorithm may
give an approximated solution.

19 / 25

Our Approach

The upper bound for the size of the memoization table:

O
(
|V |Nin · (NNin

in)2 × Nin × |V |2 × Nout

)
The time complexity for processing each item:

O (Nin + |V |+ 1)

Therefore, the overall time complexity of our algorithm is

O
(
|V |Nin+3 · N3Nin

in · Nout

)
which is polynomial to the number of vertices.

20 / 25

Our Approach

Therefore, the overall time complexity of our algorithm is

O
(
|V |Nin+3 · N3Nin

in · Nout

)
which is polynomial to the number of vertices.

Note that two previous optimal algorithms have O
(
2|V |) time

complexity.

20 / 25

Experiments

We compared the execution time of the proposed algorithm
(memoized) to that of the K.Atasu’s single cut identification
algorithm (exhaustive).

Settings

I Merit function is defined as a difference between software
and hardware latency.

I The size of the memoization table is limited to one
million items. (consumes roughly 500MB memory)

21 / 25

Synthetic Graphs

The following result is for randomly generated dataflow graphs
with 87 to 963 vertices.

 0

 5

 10

 15

 20

 100 200 300 400 500 600 700 800 900 1000

ex
ec

ut
io

n
tim

e
(s

ec
)

the number of vertices

Nin = 4, Nout = 2

exhaustive
memoized

All solutions obtained by memoized were optimal.

22 / 25

Synthetic Graphs

The following result is for randomly generated dataflow graphs
with 87 to 963 vertices.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 100 200 300 400 500 600 700 800 900 1000

ex
ec

ut
io

n
tim

e
(s

ec
)

the number of vertices

Nin = 8, Nout = 4

exhaustive
memoized

All solutions obtained by memoized were optimal.

22 / 25

Real World Applications from MiBench

Name |V | I/O exhaustive memoized Speedup dSW
† dCI

†

SHA 38
4/2 0.032s 0.016s 2.00

50
37

8/4 3.696s 1.083s 3.41 13

JPEG* 92
4/2 0.120s 0.020s 6.00

164
144

8/4 69.67s 4.460s 15.62 131

ADPCM* 133
4/2 0.411s 0.091s 4.52

220
193

8/4 89.71s 8.952s 10.02 152

MAD 137
4/2 1.125s 0.264s 4.26

337
326

8/4 311.5s 71.91s 4.33 304

SUSAN 197
4/2 0.261s 0.055s 4.75

525
515

8/4 216.8s 23.26s 9.32 503

AES 247
4/2 1.271s 0.274s 4.64

431
414

8/4 183.0min 30.24min 6.05 392

Blowfish 414
4/2 1.433s 0.280s 5.12

219
212

8/4 71.24min 12.35min 5.77 185

* disconnected graph
† execution cycle of the basic block without (dSW) and with (dCI) a custom instruction

23 / 25

Real World Applications from MiBench

 0

 2

 4

 6

 8

 10

 12

 14

 16

SHA JPEG ADPCM MAD SUSAN AES Blowfish

ru
n

tim
e

sp
ee

du
p

I/O = 4/2
I/O = 8/4

24 / 25

Conclusion

We proposed a polynomial-time algorithm for custom
instruction identification.

I The correctness of the algorithm is proved theoretically.

I The algorithm gives an optimal solution for generally used
merit function with very high probability.

I The algorithm is significantly faster than the previous
approach.

25 / 25

