« | Department of Electronics Engineering
% National Chiao Tung University

Hsinchu, Taiwan

Throughput Optimization for Latency-Insensitive
System with Minimal Queue Insertion

Juinn-Dar Huang, Yi-Hang Chen, Ya-Chien Ho

Yi-Hang Chen

gd”"-'f‘”ce‘-” carlok@adar.ee.nctu.edu.tw
esign

Automation Jan. 28, 2011

Research |

QOutline

e |ntroduction

e Preliminaries

— Latency-Insensitive System (LIS)
— Marked Graph (MG)

* Proposed Queue Sizing Method
— Quantitative Graph (QG) and Compacted QG (CQG)
— Compaction Phase
— ILP Formulation
— Recovery Phase

« Experimental Results
 Conclusions

ASP-DAC 2011 2

Introduction (1/3)

|
« Asthe manufacturing process keeps scaling down...
— Global interconnect delay becomes the largest fraction of a clock

cycle time
100

— —

-+ Gale Delay
(Fan out 4)

- Local
(scaled)

—a= Global with
Repeaters

- Global wio
Repeaters

-
=

Relative Delay

-

0.1
250 180 130 a0 63 45 32

Process Technology Node (nm)

ASP-DAC 2011 3

Introduction (2/3)
« DSM dilemma:

— For a 0.06 micron process, a signal can reach only 10% of the die’s
length in a clock cycle

— Design paradigm shifts from “computation-" to “communication-"
bound design

(m
@2
D4
o8
O 16

ASP-DAC 2011 4

Introduction (3/3)

« Relax timing constraint

¢ latency = 0.9 clock cycle

channel A

Module 1 Module 2

¢ latency = 2.4 clock cycles

channel B

Module 3
BF: Buffer

— Performance may be degraded due to multi-cycle
communication

ASP-DAC 2011 5

LIS (1/3)

e Latency-insensitive system (LIS) is a design
methodology to deal with arbitrary variation in
channel latency

 Interface logic blocks (shells) encapsulate the pre-
designed IP modules (pearls)

e Insert relay stations (buffers) to pipeline long
Interconnects

Shell

Input channel 1

muxi—p|
- Output channel

A
0 Stallable IP core
Input channgl 2 N

oo > J—' Pearl
A
A

Control

ASP-DAC 2011

6

LIS (2/3)

An LIS Example

: Relay Station

Pearls (synchronous IP modules)
Shells (interface logic blocks)
Channels (short channels)
Channels (long channels)

ASP-DAC 2011 7

LIS (3/3)

e Functional behavior is identical as the original system
— however, latency and throughput may NOT be

|'[
D D D
1 2 3
| u R I _l l_)__l
= /A Timei1 ~C—>—>_A Time2 \JC_} —> A Time3 JC—?"'

IS I R IS T R IR
|3 3

L] >[] |
3 B W 4 D v : IP core : Relay station

3 g |4 L
—> A Timed ~C—>—> /A Time5 uc—*

" 1: Queue on channel

T el T T gg T

1 1 2 3 | 4 4 | 5 6 7

T1|(T2|(T3|T4|TS5|T6|T7|T8|T9

ASP-DAC 2011 8

Marked Graph (1/2)

 Marked graph (MG) is a conventional representation
for modeling concurrent operations within a system

— For RS
> solid edge : no token
» RS produces a void event initially
> dashed edge : two tokens
» every RS contains a two-entry queue

— For shell
> solid edge : one token
» shell produces a valid event initially
> dashed edge : actual queue size

ASP-DAC 2011 9

Marked Graph (2/2)

 Transform an LIS into its MG representation
— the gqueue size of all channels in shells is set to one

B
- A o |

[. g1

A

o

o

B

C
O~
(O
.®4.

 The maximal sustainable throughput (MST) of an
LIS is bound to the lowest token-to-place ratio (TPR)
of all cycles In its corresponding MG

ASP-DAC 2011 10

Marked Graph Example

e System throughput : find the cycle with the lowest ratio of
tokens to places

A D C
I EE 3N Bl — | (o= Critical cycle : A-D-C-B-A
0 ~e~| | System throughput : 3/4
4———-—@4—1——— — (@)=
B
A D C
Il EESO1 i _@+: Add one queue at channel B-C
>0 ‘o) System throughput : 1 (4/4)

Optimize throughput by queue sizing in marked graph

ASP-DAC 2011 11

QOutline

Proposed Queue Sizing Method
— Quantitative Graph (QG) and Compacted QG (CQG)
— Compaction Phase
— ILP Formulation
— Recovery Phase

Experimental Results
Conclusions

ASP-DAC 2011

12

Quantitative Graph (QG)

e A guantitative graph (QG) with respect to a given MG
IS a quadruple (V, E, w, Q)
— V Is the set of vertices
— E Is the set of edges
— W . E—= Z* specifies the number of valid tokens
— g : E—= Z* indicates the queue size
A D C

(w,9)=(0,2) (w,q)=(1,1)

=(1,7)

—3 : regular direction (F)
-===> . reverse direction (R)

ASP-DAC 2011 13

Compacted Quantitative Graph (CQG)

o A compacted quantitative graph (CQG) H is defined
as a sextuple (V, E, w, q, b, c)
— (V, E, w, q) Is identical to that of QG

— ¢ . E — Z* assigns an extra compaction factor to record
the compaction level

— b : E — Z* specifies an extra burden factor to register the
load level due to compaction

TPR : token-to-place ratio TPD : token-place difference

2. we)+2 q(e) g(e)—c(e).fore= Rincycle C
TPR(C) = <F ocF TPD,(¢) = resty
D cle) w(e)—c(e). for e e F ncycle C

e

F (regular direction) ;| =——>
R (reverse direction) im===>

ASP-DAC 2011 14

Compaction Phase

 The size of QG becomes extremely large as the
corresponding system gets complicated

 \We propose a compaction phase to further decrease
graph size
— Path Condensation

— Edge Unification

ASP-DAC 2011 15

Compaction Phase - Path Condensation

* We call a simple path p,,<u,v,,...v,,v> condensable if it

satisfies the following two conditions
— The length of p,, 23,0rnz=1

— For each intermediate vertex {v,,v,,...,v,}, input degree and output
degree must both be equal to 1

(mq,b,f?)=(af;?'ﬁ 7, ?@({.ﬁq’b’c}={qu& ;f’ f) (W;ﬁ?,b, c}):{f},:??: G:+q3, ;.‘}2)

o o

(wlg.b,c)=(1,q, 17,7 (w,q,b,c)=(1,g7,1) (W,q,b,¢)=(2, g3 = q-*q4 1,2)

(w,q,b,¢)=(1,q9517,17) @ w,q,b,¢)=(1,g5 1,1)(W,q,b,¢)=(1,95 1,1 (w,9,6,¢)=(1,g5,7,7)

ASP-DAC 2011 16

Compaction Phase - Edge Unification

» Forany two vertices v; and v, if there exist multiple edges from
Vi to v;
- E, (v, v)) is the set containing all parallel edges from v; to v;
- An edge ¢, € E, (v, v) is called a dominating edge, if
> C(eq) — w(ey) 2 c(ey) — w(ey) for every edge e, € E, (v, V)

E Lowest token-place difference = most critical constraint

(“’1 Q: br C)z(f: qu fr 2)

@ _®(w,q,6,¢)=(1, qg,ZE

(W.G,6,0)=(2,95.1,2) L)

(w,q,6,¢)=(1,95 1,1 w,q,b,¢)=(1,95,1,7)(W,q,6,¢)=(1,q5 1, f)®:uq, b,¢)=(1,q6,1,7)

ASP-DAC 2011 17

ILP Formulation

o After a series of path condensation and edge
unification operations, a CQG H with minimal
vertices and edges can be derived

e On top of CQG, using ILP to get optimal solutions
Minimize: Zq(g)

eckE
subject fo:

Z IPD.(e) =0 foreverycycleCin H

e

w(e)+qg(e)—2xc(e) =0, foreveryedge emn H

* This approach can still handle reasonably large
systems within an acceptable runtime

ASP-DAC 2011

18

Recovery Phase - Edge Split

 Edge Split
— Rebuild multi-edges form edge unification
— To ensure TPD(e)>0 for any newly generated cycle
> Oy —Cy20y—Cq(Orqgy2cy,+0d;—Cy)

(M’; q: br C)z(gx Q:-’r fr 3)
=@ ¢ @@

(w,q,b,¢)=(1,q951,7)
¥ ILP

(w,q.6,¢)=(2,4,1,3)
@@ 8 @——

(w,q,b,c)=(1{1+4-3=2)1,1)
selected dominating edge e, e,'s removed parallel edge e,

ASP-DAC 2011

19

Recovery Phase - Path Expansion (1/2)

* The way for distributing q(e,) to those edges along p
IS not unique
- Need to guarantee minimal queue insertion

- Let e,,€ E(p) be the edge with lowest burden factor along
a condensable path p

2xc(e)—w(e). fore #e,
qe) = gle,)— D q(e). fore=e,

ecE(p).exe,

@ . % e ;
d: = K - = gz =X
' b =kby ILP 2 2 minimum possible value

ASP-DAC 2011 20

Recovery Phase - Path Expansion (2/2)

 Example

_® w.q.6,9)=2g]1,3)

(w,9,6,0)=(1fg)1, f)’@‘

$ ILP

@ (w,q.b,c)=24[1B)

(w,9,6,¢)=(1, 2

e

»

_® (”"; QJ b: C):(?'IQE: ‘?:2

OZ=0

(w,q,b,¢)=(2)

(’W’, q br C-'):('f, oF7 1# f;@”ﬂqﬂb}, C):(fr

qs1,7)

€m

(w,q,6,¢)=(1,2,1, ff@?mcm c)=(1

ASP-DAC 2011

-3=17,7)

21

Overall Flow

 The overall flow of our proposed method for minimal
gueue insertion

deli cti
Us @) QG W) QG

phase
constraint
formulation

Optimal recovery Optimal ILP Constraint

solution for Solution for sot

QG phase €QG

ASP-DAC 2011 29

QOutline

« Experimental Results
 Conclusions

ASP-DAC 2011 23

Experimental Results (1/3)

e The proposed technigue can successfully reduce
the number of vertices and edges

Case Qriginal QG Minimal CQG
Name . #Cycles (V. E) #Cycles
4

Testcase?2

=
Testcased 30540 (20,33) 10123

Testcased

Testcase5 (56,73)
Rl N | I I
I I | | i
Rl N | | I W

ASP-DAC 2011

24

Experimental Results (2/3)

o Latency of every edge is also randomly assigned
with an integer within the interval [O, L-1]

Case
Name

Proposed Method

#Queues

L=3

Collins’ Method [12]

#Queues

ILP directly to QG

A
=
5

Run-

time #Queues

time

Testcase1

P2

Testcase
Testcase
Testcased
Testcased
Testcaseb
Testcase7

Testcased

| Testcased
-
| Testcases
—
| Testcaset
e |

n [}

|
Led

oo
Cad NN
ol @l &

20

et |
Oy

0 | 20

B
n
i
—th
I

-
Cad
A
Cad

Fa
sl

|

[]
|
[]
o
=l

ASP-DAC 2011

25

Experimental Results (3/3)

 The improvement can slightly increase as fabrication
process keeps scaling

L=16
F-'rupﬂsed Method Collins’ Method [12] ILP directly to QG

#Queues ﬁfﬂl #Queues ﬁrl:lnl #Queues
Testcase1 | | |
290

Testcased

Testcased

Testcaseb

Testcaseb

Testcase/

)| I I I
BN G N I I I

ASP-DAC 2011 26

Conclusions

 In this work, we proposed
— A new representation for LIS: quantitative graph (QG)
— Two compaction techniques: QG =2 CQG
— The optimal solution on CQG can be achieved via ILP
— Two recovery techniques: CQG = QG

 The experimental results show that
— The number of cycles can be reduced significantly

— We can handle moderately large systems in acceptable
runtime even using ILP

— Up to 28% reduction in queue size as compared to the
prior art

ASP-DAC 2011 27

Thank You!

	Throughput Optimization for Latency-Insensitive System with Minimal Queue Insertion
	Outline
	Introduction (1/3)
	Introduction (2/3)
	Introduction (3/3)
	LIS (1/3)
	LIS (2/3)
	LIS (3/3)
	Marked Graph (1/2)
	Marked Graph (2/2)
	Marked Graph Example
	Outline
	Quantitative Graph (QG)
	Compacted Quantitative Graph (CQG)
	Compaction Phase
	Compaction Phase - Path Condensation
	Compaction Phase - Edge Unification
	ILP Formulation
	Recovery Phase - Edge Split
	Recovery Phase - Path Expansion (1/2)
	Recovery Phase - Path Expansion (2/2)
	Overall Flow
	Outline
	Experimental Results (1/3)
	Experimental Results (2/3)
	Experimental Results (3/3)
	Conclusions

