
Department of Electronics Engineering
National Chiao Tung University
Hsinchu, Taiwan

Throughput Optimization for Latency-Insensitive
System with Minimal Queue Insertion

Yi-Hang Chen
carlok@adar.ee.nctu.edu.tw

Jan. 28, 2011

Juinn-Dar Huang, Yi-Hang Chen, Ya-Chien Ho

ASP-DAC 2011

Outline
• Introduction
• Preliminaries

– Latency-Insensitive System (LIS)
– Marked Graph (MG)

• Proposed Queue Sizing Method
– Quantitative Graph (QG) and Compacted QG (CQG)
– Compaction Phase
– ILP Formulation
– Recovery Phase

• Experimental Results
• Conclusions

2

ASP-DAC 2011

Introduction (1/3)

3

• As the manufacturing process keeps scaling down…
– Global interconnect delay becomes the largest fraction of a clock

cycle time

ASP-DAC 2011

Introduction (2/3)

4

• DSM dilemma:
– For a 0.06 micron process, a signal can reach only 10% of the die’s

length in a clock cycle
– Design paradigm shifts from “computation-” to “communication-”

bound design

0.25 0.18 0.13 0.9 0.06
1

2
4

8
16

0

20

40

60

80

100(%)

(um)

(clock cycle)

1
2
4
8
16

ASP-DAC 2011

Introduction (3/3)

5

• Relax timing constraint

Module_1 Module_2

Module_3

channel A

channel B

latency = 0.9 clock cycle

latency = 2.4 clock cycles

BF

BF

– Performance may be degraded due to multi-cycle
communication

BF: Buffer

ASP-DAC 2011

LIS (1/3)
• Latency-insensitive system (LIS) is a design

methodology to deal with arbitrary variation in
channel latency

• Interface logic blocks (shells) encapsulate the pre-
designed IP modules (pearls)

• Insert relay stations (buffers) to pipeline long
interconnects

6

ASP-DAC 2011 7

RS

RS

RS
RS

RS

RS
Pearls (synchronous IP modules)
Shells (interface logic blocks)
Channels (short channels)
Channels (long channels)

P1

P2

P3

P4

P6

P5

P7

RS : Relay Station

An LIS Example

LIS (2/3)

ASP-DAC 2011

LIS (3/3)
• Functional behavior is identical as the original system

– however, latency and throughput may NOT be

8

ASP-DAC 2011

Marked Graph (1/2)
• Marked graph (MG) is a conventional representation

for modeling concurrent operations within a system
– For RS

› solid edge : no token
» RS produces a void event initially

› dashed edge : two tokens
» every RS contains a two-entry queue

– For shell
› solid edge : one token

» shell produces a valid event initially
› dashed edge : actual queue size

9

ASP-DAC 2011

• Transform an LIS into its MG representation
– the queue size of all channels in shells is set to one

• The maximal sustainable throughput (MST) of an
LIS is bound to the lowest token-to-place ratio (TPR)
of all cycles in its corresponding MG

10

Marked Graph (2/2)

ASP-DAC 2011 1111

Marked Graph Example
• System throughput : find the cycle with the lowest ratio of

tokens to places

●

●

●

●

●

●

●
●

●

A D

B

C

Optimize throughput by queue sizing in marked graph

Critical cycle : A-D-C-B-A

System throughput : 3/4

Add one queue at channel B-C

System throughput : 1 (4/4)

●
●

●

●

●

●

●

●

A D

B

C

ASP-DAC 2011

Outline
• Introduction
• Preliminaries

– Latency-Insensitive System (LIS)
– Marked Graph (MG)

• Proposed Queue Sizing Method
– Quantitative Graph (QG) and Compacted QG (CQG)
– Compaction Phase
– ILP Formulation
– Recovery Phase

• Experimental Results
• Conclusions

12

ASP-DAC 2011

Quantitative Graph (QG)
• A quantitative graph (QG) with respect to a given MG

is a quadruple (V, E, w, q)
– V is the set of vertices
– E is the set of edges
– w : E→ Z+ specifies the number of valid tokens
– q : E→ Z+ indicates the queue size

13

: regular direction (F)
: reverse direction (R)

ASP-DAC 2011

Compacted Quantitative Graph (CQG)
• A compacted quantitative graph (CQG) H is defined

as a sextuple (V, E, w, q, b, c)
– (V, E, w, q) is identical to that of QG
– c : E → Z+ assigns an extra compaction factor to record

the compaction level
– b : E → Z+ specifies an extra burden factor to register the

load level due to compaction

14

F (regular direction) :
R (reverse direction) :

TPR : token-to-place ratio TPD : token-place difference

ASP-DAC 2011 15

Compaction Phase
• The size of QG becomes extremely large as the

corresponding system gets complicated

• We propose a compaction phase to further decrease
graph size

– Path Condensation
– Edge Unification

ASP-DAC 2011

Compaction Phase - Path Condensation
• We call a simple path pu,v<u,v1,…vn,v> condensable if it

satisfies the following two conditions
– The length of pu,v ≥ 3, or n ≥ 1

– For each intermediate vertex {v1,v2,…,vn}, input degree and output
degree must both be equal to 1

16

ASP-DAC 2011

Compaction Phase - Edge Unification

17

Lowest token-place difference most critical constraint

ASP-DAC 2011

ILP Formulation
• After a series of path condensation and edge

unification operations, a CQG H with minimal
vertices and edges can be derived

• On top of CQG, using ILP to get optimal solutions

• This approach can still handle reasonably large
systems within an acceptable runtime

18

ASP-DAC 2011

Recovery Phase - Edge Split
• Edge Split

– Rebuild multi-edges form edge unification
– To ensure TPDC(e)≥0 for any newly generated cycle

› qk – ck ≥ qd – cd (or qk ≥ ck + qd – cd)

19

selected dominating edge ed ed’s removed parallel edge ek

ILP

ASP-DAC 2011

Recovery Phase - Path Expansion (1/2)

20

V1V1 V2V2V3V3

q = k by ILP q2 = xq1 = k - x

em

= minimum possible value

ASP-DAC 2011

Recovery Phase - Path Expansion (2/2)
• Example

21

ILP

ASP-DAC 2011

Overall Flow
• The overall flow of our proposed method for minimal

queue insertion

22

ASP-DAC 2011

Outline
• Introduction
• Preliminaries

– Latency-Insensitive System (LIS)
– Marked Graph (MG)

• Proposed Queue Sizing Method
– Quantitative Graph (QG) and Compacted QG (CQG)
– Compaction Phase
– ILP Formulation
– Recovery Phase

• Experimental Results
• Conclusions

23

ASP-DAC 2011

Experimental Results (1/3)
• The proposed technique can successfully reduce

the number of vertices and edges

24

ASP-DAC 2011

Experimental Results (2/3)
• Latency of every edge is also randomly assigned

with an integer within the interval [0, L-1]

25

ASP-DAC 2011

Experimental Results (3/3)
• The improvement can slightly increase as fabrication

process keeps scaling

26

ASP-DAC 2011

Conclusions
• In this work, we proposed

– A new representation for LIS: quantitative graph (QG)
– Two compaction techniques: QG CQG
– The optimal solution on CQG can be achieved via ILP
– Two recovery techniques: CQG QG

• The experimental results show that
– The number of cycles can be reduced significantly
– We can handle moderately large systems in acceptable

runtime even using ILP
– Up to 28% reduction in queue size as compared to the

prior art

27

ASP-DAC 2011 28

Thank You!

	Throughput Optimization for Latency-Insensitive System with Minimal Queue Insertion
	Outline
	Introduction (1/3)
	Introduction (2/3)
	Introduction (3/3)
	LIS (1/3)
	LIS (2/3)
	LIS (3/3)
	Marked Graph (1/2)
	Marked Graph (2/2)
	Marked Graph Example
	Outline
	Quantitative Graph (QG)
	Compacted Quantitative Graph (CQG)
	Compaction Phase
	Compaction Phase - Path Condensation
	Compaction Phase - Edge Unification
	ILP Formulation
	Recovery Phase - Edge Split
	Recovery Phase - Path Expansion (1/2)
	Recovery Phase - Path Expansion (2/2)
	Overall Flow
	Outline
	Experimental Results (1/3)
	Experimental Results (2/3)
	Experimental Results (3/3)
	Conclusions

