

Department of Electronics Engineering National Chiao Tung University Hsinchu, Taiwan

Throughput Optimization for Latency-Insensitive System with Minimal Queue Insertion

Juinn-Dar Huang, Yi-Hang Chen, Ya-Chien Ho

Yi-Hang Chen carlok@adar.ee.nctu.edu.tw Jan. 28, 2011

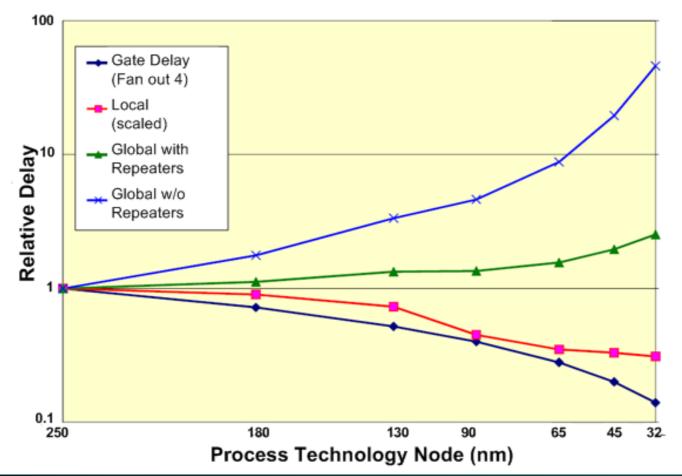
Outline

- Introduction
- Preliminaries
 - Latency-Insensitive System (LIS)
 - Marked Graph (MG)
- Proposed Queue Sizing Method
 - Quantitative Graph (QG) and Compacted QG (CQG)
 - Compaction Phase
 - ILP Formulation
 - Recovery Phase
- Experimental Results
- Conclusions

Introduction (1/3)

• As the manufacturing process keeps scaling down...

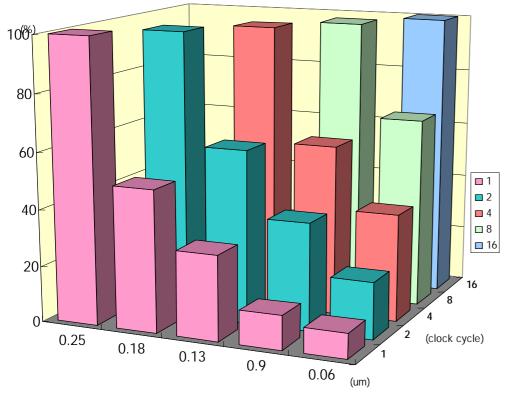
Global interconnect delay becomes the largest fraction of a clock cycle time

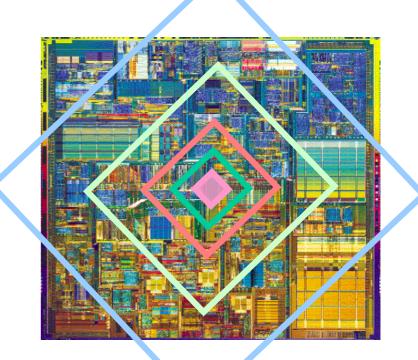


ASP-DAC 2011

Introduction (2/3)

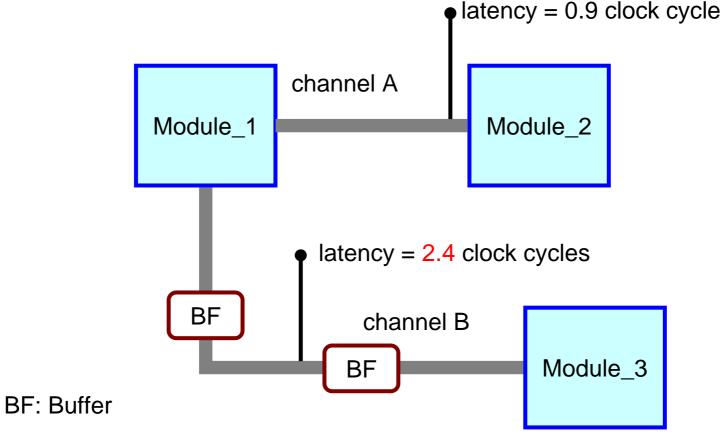
- DSM dilemma:
 - For a 0.06 micron process, a signal can reach only 10% of the die's length in a clock cycle
 - Design paradigm shifts from "computation-" to "communication-" bound design





Introduction (3/3)

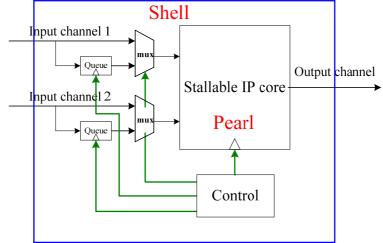
Relax timing constraint



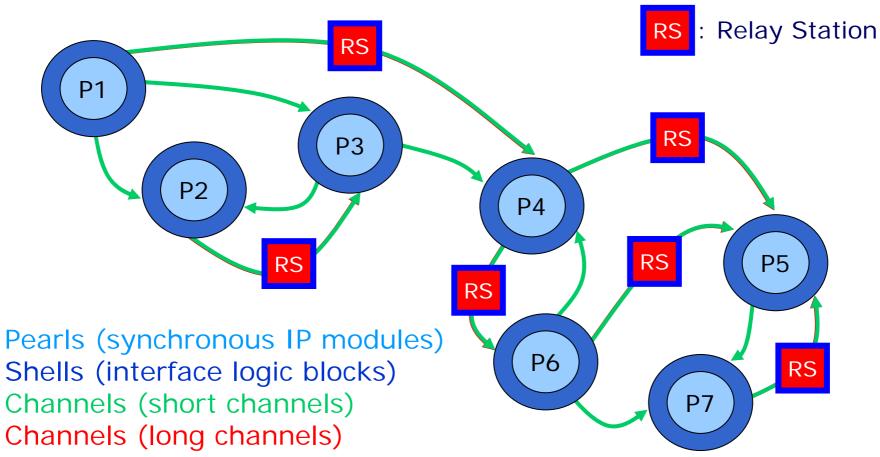
 Performance may be degraded due to multi-cycle communication

LIS (1/3)

- Latency-insensitive system (LIS) is a design methodology to deal with arbitrary variation in channel latency
- Interface logic blocks (shells) encapsulate the predesigned IP modules (pearls)
- Insert relay stations (buffers) to pipeline long interconnects



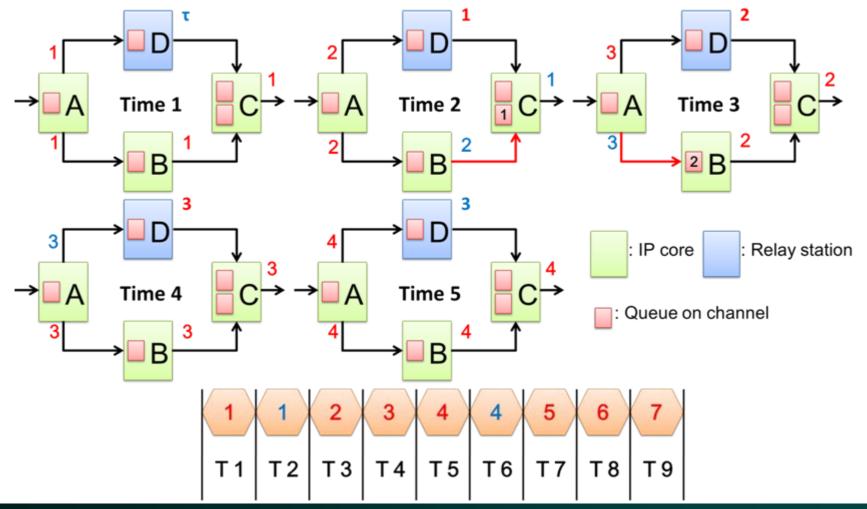
An LIS Example



LIS (3/3)

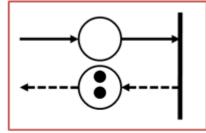
• Functional behavior is identical as the original system

- however, latency and throughput may NOT be

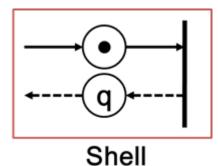


Marked Graph (1/2)

- Marked graph (MG) is a conventional representation for modeling concurrent operations within a system
 - For RS
 - > solid edge : no token
 - » RS produces a void event initially
 - > dashed edge : two tokens
 - » every RS contains a two-entry queue
 - For shell
 - > solid edge : one token
 - » shell produces a valid event initially
 - > dashed edge : actual queue size



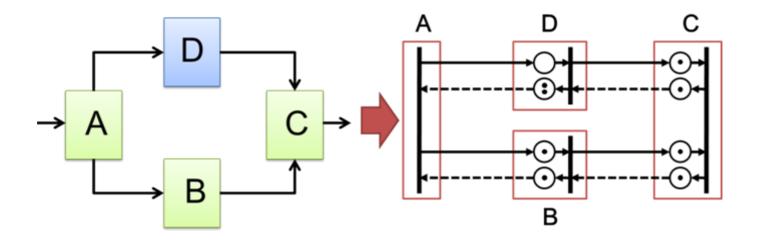
Relay station



Marked Graph (2/2)

• Transform an LIS into its MG representation

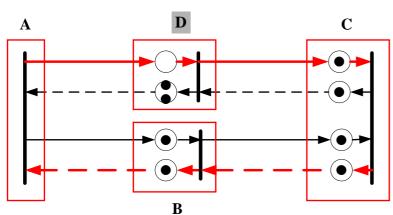
- the queue size of all channels in shells is set to one



 The maximal sustainable throughput (MST) of an LIS is bound to the lowest token-to-place ratio (TPR) of all cycles in its corresponding MG

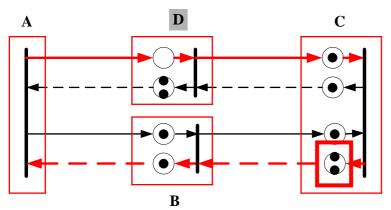
Marked Graph Example

• System throughput : find the cycle with the lowest ratio of tokens to places



Critical cycle : A-D-C-B-A

System throughput : 3/4



Add one queue at channel B-C System throughput : 1 (4/4)

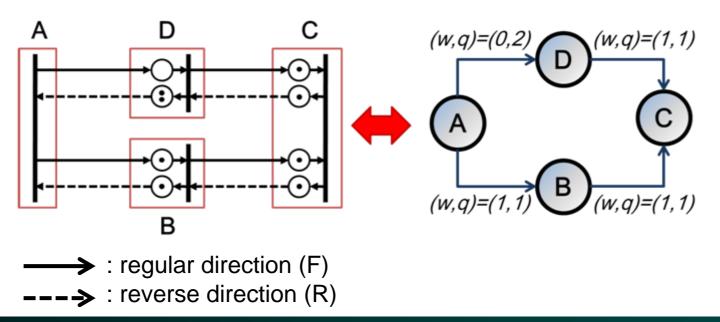
Optimize throughput by queue sizing in marked graph

Outline

- Introduction
- Preliminaries
 - Latency-Insensitive System (LIS)
 - Marked Graph (MG)
- Proposed Queue Sizing Method
 - Quantitative Graph (QG) and Compacted QG (CQG)
 - Compaction Phase
 - ILP Formulation
 - Recovery Phase
- Experimental Results
- Conclusions

Quantitative Graph (QG)

- A *quantitative graph* (QG) with respect to a given MG is a quadruple (V, E, w, q)
 - V is the set of vertices
 - E is the set of edges
 - $-w: E \rightarrow Z^+$ specifies the number of valid tokens
 - $-q: E \rightarrow Z^+$ indicates the queue size



Compacted Quantitative Graph (CQG)

- A compacted quantitative graph (CQG) H is defined as a sextuple (V, E, w, q, b, c)
 - -(V, E, w, q) is identical to that of QG
 - c: $E \rightarrow Z^+$ assigns an extra compaction factor to record the compaction level
 - $b: E \rightarrow Z^+$ specifies an extra *burden factor* to register the load level due to compaction

TPR : token-to-place ratio TPD : token-place difference

$$TPR(C) = \frac{\sum_{e \in F} w(e) + \sum_{e \in R} q(e)}{\sum_{e \in C} c(e)}$$

 $TPD_{C}(e) = \begin{cases} q(e) - c(e), \text{ for } e \in R \text{ in cycle } C \\ w(e) - c(e), \text{ for } e \in F \text{ in cycle } C \end{cases}$

F (regular direction) : → R (reverse direction) :--->

Compaction Phase

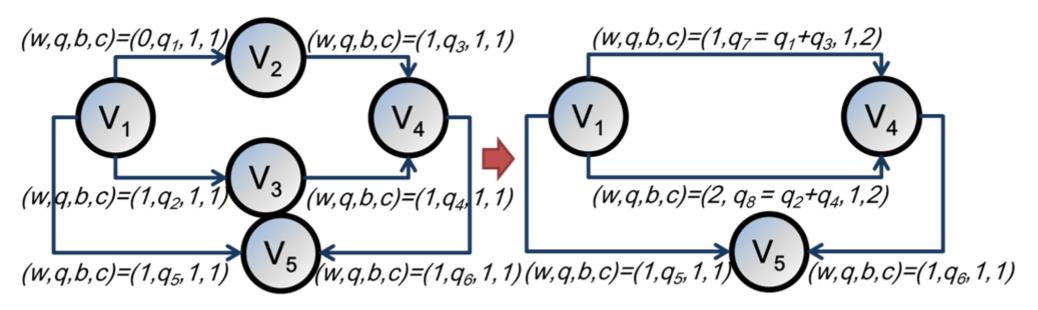
- The size of QG becomes extremely large as the corresponding system gets complicated
- We propose a compaction phase to further decrease graph size
 - Path Condensation
 - Edge Unification

Compaction Phase - Path Condensation

 We call a simple path p_{u,v}<u,v₁,...v_n,v> condensable if it satisfies the following two conditions

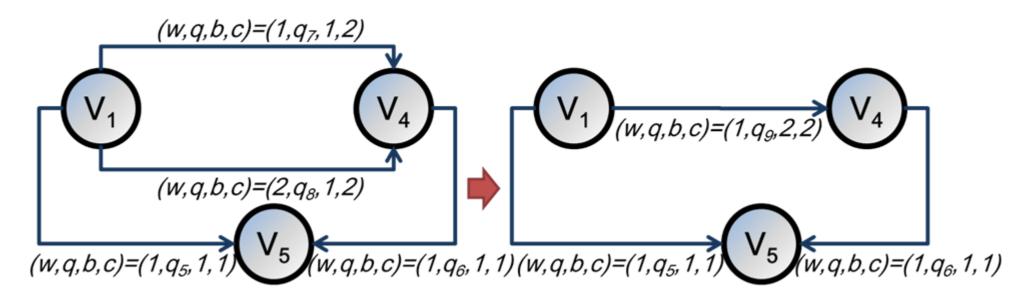
– The length of $p_{u,v} \ge 3$, or $n \ge 1$

- For each intermediate vertex $\{v_1, v_2, ..., v_n\}$, input degree and output degree must both be equal to **1**



Compaction Phase - Edge Unification

- For any two vertices v_i and v_j, if there exist multiple edges from v_i to v_j
 - $E_m(v_i, v_j)$ is the set containing all parallel edges from v_i to v_j
 - An edge $e_d \in E_m(v_i, v_j)$ is called a *dominating edge*, if
 - $c(e_d) w(e_d) \ge c(e_k) w(e_k)$ for every edge $e_k \in E_m(v_i, v_j)$ Lowest token-place difference → most critical constraint



ILP Formulation

- After a series of path condensation and edge unification operations, a CQG *H* with minimal vertices and edges can be derived
- On top of CQG, using ILP to get optimal solutions

Minimize:
$$\sum_{e \in E} q(e)$$

subject to:

$$\sum_{e \in C} TPD_C(e) \ge 0 \text{ for every cycle } C \text{ in } H$$

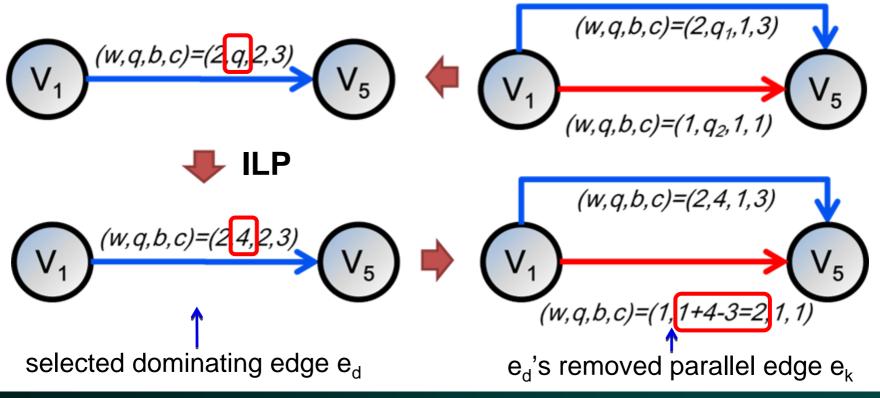
 $w(e) + q(e) - 2 \times c(e) \ge 0$, for every edge e in H

• This approach can still handle reasonably large systems within an acceptable runtime

Recovery Phase - Edge Split

- Edge Split
 - Rebuild multi-edges form edge unification
 - To ensure $TPD_{C}(e) \ge 0$ for any newly generated cycle

$$, \quad q_k - c_k \ge q_d - c_d \text{ (or } q_k \ge c_k + q_d - c_d)$$



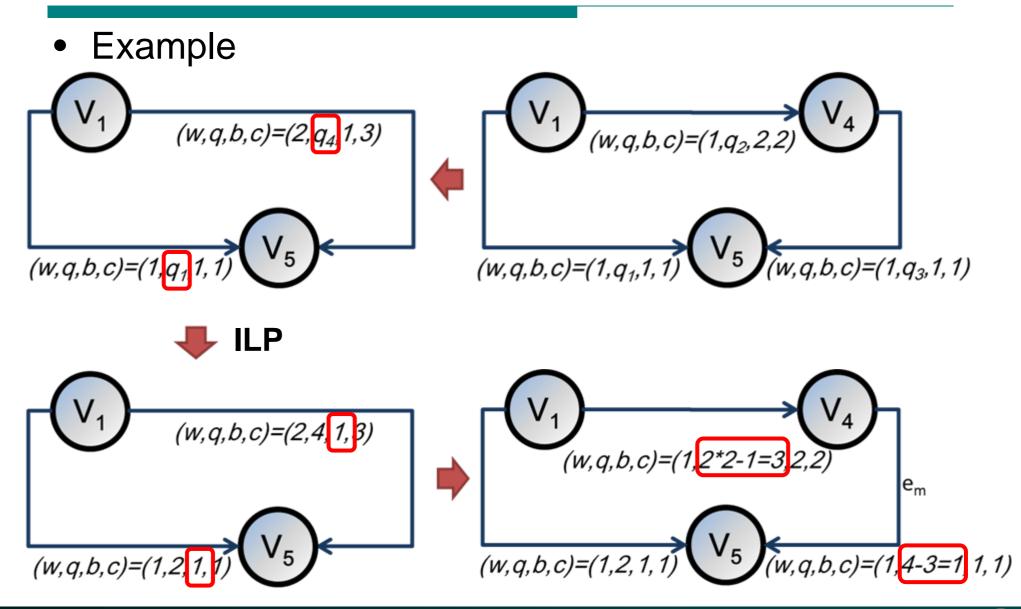
Recovery Phase - Path Expansion (1/2)

- The way for distributing q(e_p) to those edges along p is not unique
 - Need to guarantee minimal queue insertion
 - Let $e_m \in E(p)$ be the edge with lowest burden factor along a condensable path p

$$q(e) = \begin{cases} 2 \times c(e) - w(e), \text{ for } e \neq e_m \\ q(e_p) - \sum_{e \in E(p), e \neq e_m} q(e), \text{ for } e = e_m \end{cases}$$

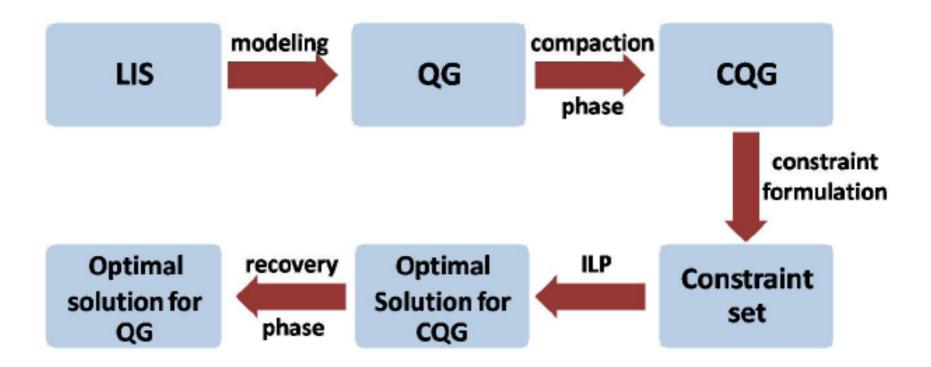
$$v_1$$
 v_3 v_2
 $q_1 = k - x_q = k$ by ILP $q_2 = x$
 $=$ minimum possible value

Recovery Phase - Path Expansion (2/2)



Overall Flow

 The overall flow of our proposed method for minimal queue insertion



Outline

- Introduction
- Preliminaries
 - Latency-Insensitive System (LIS)
 - Marked Graph (MG)
- Proposed Queue Sizing Method
 - Quantitative Graph (QG) and Compacted QG (CQG)
 - Compaction Phase
 - ILP Formulation
 - Recovery Phase
- Experimental Results
- Conclusions

Experimental Results (1/3)

• The proposed technique can successfully reduce the number of vertices and edges

Case Name	Origin	al QG	Minimal CQG		
	(V, E)	#Cycles	(V, E)	#Cycles	
Testcase1	(11,15)	55	(8,11)	12	
Testcase2	(17,21)	51	(13,17)	14	
Testcase3	(45,61)	30540	(20,35)	10123	
Testcase4	(58,76)	48590	(39,45)	10497	
Testcase5	(104,121)	42435	(56,73)	19754	
Testcase6	(126,172)	> 1Million	(77,98)	132415	
Testcase7	(175,201)	> 1Million	(66,84)	15423	
Testcase8	(297,318)	> 1Million	(116,142)	23862	

Experimental Results (2/3)

• Latency of every edge is also randomly assigned with an integer within the interval [0, *L*-1]

L	L=3					
Case Name	Proposed Method		Collins' Method [12]		ILP directly to QG	
	#Queues	Run- time	#Queues	Run- time	#Queues	Run- time
Testcase1	20	0	20	0	20	1
Testcase2	9	0	9	0	9	0
Testcase3	51	5	80	4	51	14
Testcase4	43	14	46	13	43	44
Testcase5	29	40	78	27	29	340
Testcase6	77	867	90	542	*	*
Testcase7	84	32	90	23	*	*
Testcase8	114	73	141	47	*	*
Ratio	0.77	1.57	1	1	-	•

Experimental Results (3/3)

 The improvement can slightly increase as fabrication process keeps scaling

L	L=16					
Case Name	Proposed Method		Collins' Method [12]		ILP directly to QG	
	#Queues	Run- time	#Queues	Run- time	#Queues	Run- time
Testcase1	68	1	68	0	68	1
Testcase2	76	0	77	0	76	0
Testcase3	290	9	437	6	290	19
Testcase4	291	31	351	19	291	52
Testcase5	256	77	386	48	256	459
Testcase6	519	1438	793	913	*	•
Testcase7	673	69	753	40	*	*
Testcase8	641	131	1035	83	*	*
Ratio	0.72	1.58	1	1	•	•

Conclusions

- In this work, we proposed
 - A new representation for LIS: quantitative graph (QG)
 - Two compaction techniques: QG \rightarrow CQG
 - The optimal solution on CQG can be achieved via ILP
 - Two recovery techniques: CQG \rightarrow QG
- The experimental results show that
 - The number of cycles can be reduced significantly
 - We can handle moderately large systems in acceptable runtime even using ILP
 - Up to 28% reduction in queue size as compared to the prior art

Thank You!