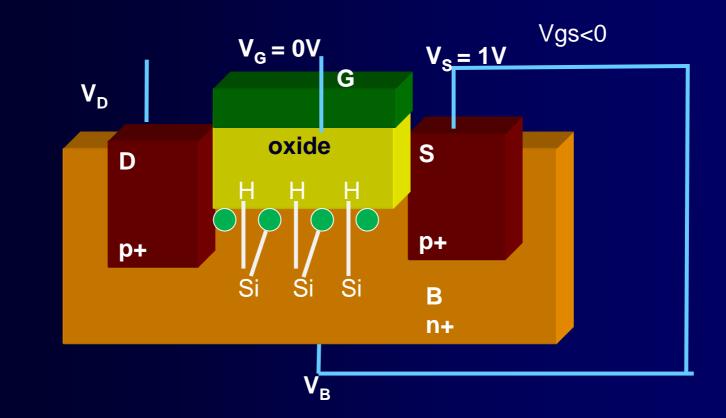


NBTI-Aware Power Gating Design

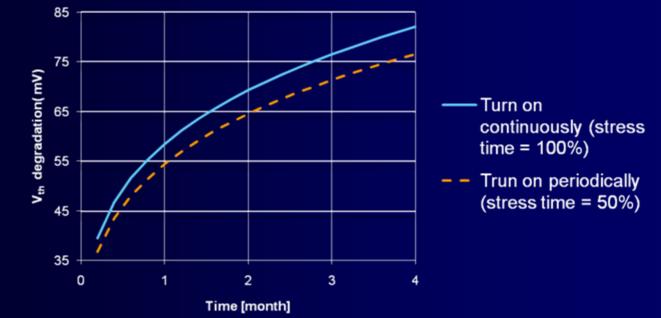
Ming-Chao Lee, Yu-Guang Chen, Ding-Kei Huang, Shih-Chieh Chang

Department of CS, National Tsing Hua University, Hsinchu, Taiwan

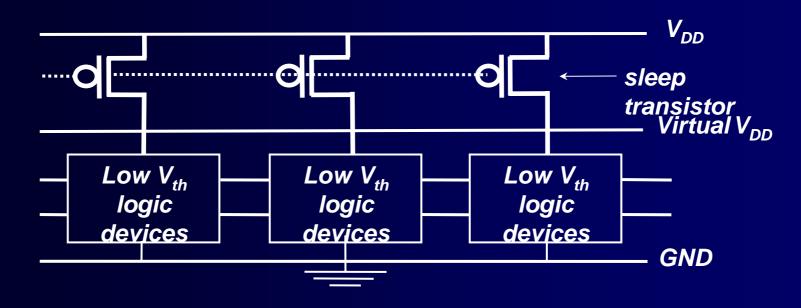


- Introduction
- NBTI-Aware Power Gating Design
- Essential Issues of Arranging On/Off Signals in the Sequence
- Experimental Results
- Conclusions

- Introduction
- NBTI-Aware Power Gating Design
- Essential Issues of Arranging On/Off Signals in the Sequence
- Experimental Results
- Conclusions


NBTI Effect

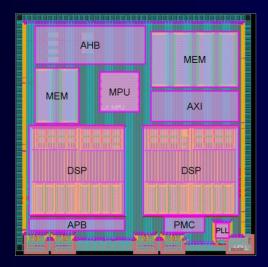
- Negative Bias Temperature Instability (NBTI)
- An inevitable side effect on the lifetime reliability of integrated circuits.


NBTI Effect

- Two phases : Stress and Recovery.
- Stress phase results in increasing |V_{TH}| and decreasing performance.
- Recovery phase can recover V_{TH} degradation.
- V_{TH} degradation is directly proportional to the stressed time of PMOS.

Header-Based Power Gating Design

- NBTI effect poses a serious problem on a headerbased power gating design.
 - (i) PMOS sleep transistors are always turned-on.
 (ii) PMOS sleep transistors are on the critical path from the power rail to the circuit.


Related Works

Three NBTI-tolerant PMOS sleep transistor cell design approaches :

- (i) Sleep transistor over-sizing
- (ii) Forward-body-biasing
- (iii) Equivalent 0-probability reduction of the sleep transistor driving signal.
 - A. Calimera, E. Macii, and M. Poncino, "NBTI-Aware Sleep Transistor Design for Reliable Power-Gating," *Proc. of the GLSVLSI*, pp. 333-338, 2009.

Problems on Power Gating Designs

- Entire circuit will slow down because of V_{TH} degradation on PMOS sleep transistors.
- A modern design usually operates in several different power modes.
- To safely maintain the functionality, sleep transistors are pessimistically sized.

Power Modes	MPU	DSP1	DSP2
Full speed	1.2V	1.2V	1.2V
Active1	1.2V	1.2V	1.0V
Active2	1.2V	1.0V	1.2V
Suspend	1.0V	1.0V	1.0V
Inactive	1.0V	0V	0V

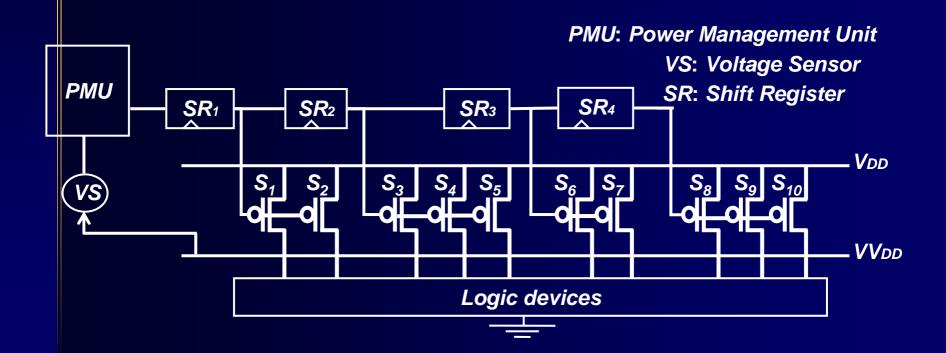
Contributions

No research considering NBTI effect on the modern power gating design.

A novel power gating structure

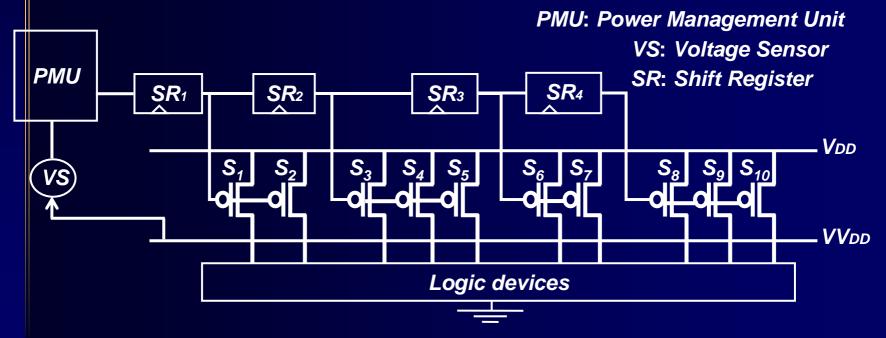
- Periodically turn on sleep transistors
- Turn off unnecessary sleep

A new flip-flop (FF) to alleviate two important phenomena


- Voltage drop
- Glitch on the VV_{DD} rail.

Integrated smoothly with wakeup scheduling.

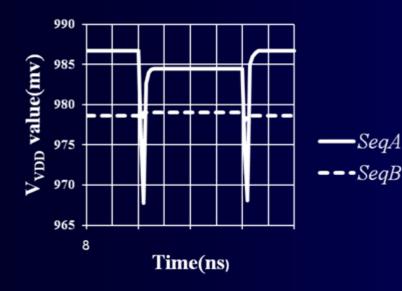
25% lifetime extension of PMOS sleep transistors.


- Introduction
- NBTI-Aware Power Gating Design
- Essential Issues of Arranging On/Off Signals in the Sequence
- Experimental Results
- Conclusions

NBTI-Aware Power Gating Design

NBTI-Aware Power Gating Design

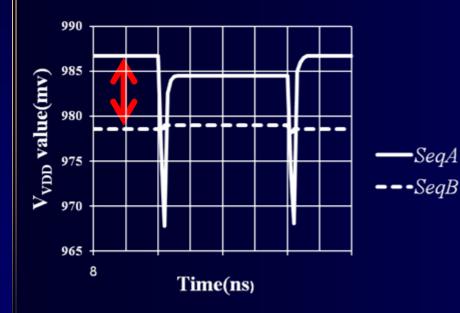
- Four states of On/Off signals in four SRs, {SR₁, SR₂, SR₃, SR₄},
 - {Off, On, On, On}, {On, Off, On, Off, On, On}, {On, Off, On}, and {On, On, On, Off}.
- The duty cycle of each PMOS sleep transistors is 3/4 = 75%.


- Introduction
- NBTI-Aware Power Gating Design
- Essential Issues of Arranging On/Off Signals in the Sequence
- Experimental Results
- Conclusions

Preliminary

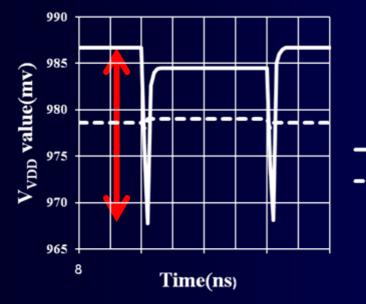
- In this paper, we assume that a wakeup scheduling of the power gating design is already determined.
 - Each SR_i connects to its corresponding group of PMOS sleep transistors.
 - The number and sizes of sleep transistors in each group have also been determined.
 - NBTI effect is directly proportional to the duty cycle of PMOS sleep transistors.
 - The duty cycle of PMOS sleep transistors is the ratio of the number of SRs whose input value is On to the total number of SRs.
 - Given the number of SRs whose input value is On, there are several ways to arrange On/Off signals in a sequence.

Examples


- Let us consider a real circuit with 12 SRs and 12 groups of sleep transistors.
 - SeqA and SeqB, both of which contain six On signals and six Off signals.
 - SeqA is interlaced On and Off signals.
 - SeqB has two continuous blocks of On and Off signals.

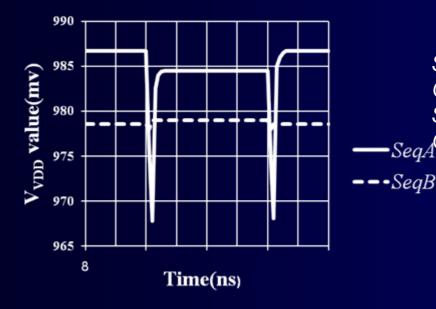
SeqA is {Off, On, Off, On, Off, On, Off, On, Off, On, Off, On}. SeqB is {On, On, On, On, On, On, Off, Off, Off, Off, Off, Off}.

Observation 1


- The maximum voltage drop on the VV_{DD} rail for SeqB is about 38% larger than that for SeqA.
 - The reason is that SeqA can balance the flowing current better than SeqB.

SeqA is {Off, On, Off, On, Off, On, Off, On, Off, On, Off, On}. SeqB is {On, On, On, On, On, On, Off, Off, Off, Off, Off, Off}.

Observation 2


- The arrangement of On and Off signals may cause larger glitches on the VV_{DD} rail during the shifting process.
 - When SeqA is shifted, all SRs switch their values at the same time.

SeqA is {Off, On, Off, On, Off, On, Off, On, Off, On, Off, On}. SeqB is {On, On, On, On, On, On, Off, Off, -SeqAOff, Off, Off, Off}.

Trade-Off

- Arranging On and Off signals in a balanced way, such as SeqA, can minimize the voltage drop but cause more glitches on the VV_{DD} rail.
- On the contrary, SeqB can cause less glitch on the VV_{DD} rail but have larger voltage drop.

SeqA is {Off, On, Off, On, Off, On, Off, On, Off, On, Off, On}. SeqB is {On, On, On, On, On, On, Off, Off, SeqAOff, Off, Off, Off}.

- Introduction
- NBTI-Aware Power Gating Design
- Essential Issues of Arranging On/Off Signals in the Sequence
- Experimental Results
- Conclusions

Experimental Setups

- Synopsys HSPICE reliability analysis to simulate NBTI effect
- TSMC 90nm CMOS technology
- An industrial benchmark: AES
- Two different power modes: 1.0V and 0.8V
- Decided number and sizes of sleep transistors and proper wakeup scheduling
- To consider NBTI effect, we also size additional 20% up sleep transistors by the over-sizing method.

Experimental Results

Table 1. Experimental results.					
0	Our approach lifetime (months)	Over-sizing method lifetime (months)	The lifetime extension (%)		
100	200	135	48.15%		
75	169	127	33.07%		
50	154	123	25.20%		
25	132	111	18.92%		
0	73	60	21.67%		
Average	145.6	111.2	30.94%		

On average, our approach can achieve 30% lifetime extension compared with the over-sizing method [3].

Our approach, which includes the chain of *GA* FF and a voltage sensor, is only around 5.77% area overhead.

- Introduction
- Related Works
- NBTI-Aware Power Gating Design
- Essential Issues of Arranging On/Off Signals in the Sequence
- Experimental Results
- Conclusions

Conclusions

- We have proposed a novel NBTI-aware power gating design to periodically turn on/off PMOS sleep transistors for the lifetime extension.
- We also consider two reliability issues which are the voltage drop and the glitch issue on the VV_{DD} rail.
- The experimental results clearly show that under the 50% usage of low power modes, our approach averagely achieves more 25% lifetime extension of PMOS sleep transistors than the sleep transistor over-sizing method [3] and also has few area overhead.

Thank you!