Robust Spatial Correlation Extraction with Limited Sample via L1-Norm Penalty

M. Gao, Z. Ye, D. Zeng, Y. Wang and Z. Yu Institute of Micro-Electronics, Tsinghua Univ. Beijing, China

Outline

- Introduction: Spatial Correlation in Random Process Variation
- Technical Background: Kriging Model and Lasso in Linear Regression
- Our Method: L1-Penalty in Kriging Model
- Experimental Results & Conclusion

Breakdown of Process Variation

Systematic:

- Caused by LPE, MVP or Layout induced stress
- Essentially predictable

Purely Random:

- Caused by some physical or process controlling limitation
- RDE, LER, Litho, Annealing, ...
- Can occur in different scales
- The two parts are usually assigned to different research regime, since the underneath methodology is different

Correlation in Random Process Variation

- One of the most nasty characteristics of Process Variation:
 - Usually a result of mixed causes
 - Can not be trivially studied or controlled
 - The killer of a handful of EDA methods

Properties of Correlation in Process Variation

- The correlations are spatial
 - It's up to the location of the device on the chip
 - Location-dependent, aka. trend:
 - due to long range effect (cross-die, cross rectile, cross wafer)
 - Distance-dependent, correlated to neighbors:
 - due to moderate range effect
 - Non-correlated:
 - due to short range effect

Breakdown of the Random Process Variation

The Importance of Correlation Study

- 1. It is not clear whether each of three types of correlation does play a role
 - To deny the ex. of any, we need solid method as well as solid data
- 2. The information on correlation help develop or ameliorate the process
- 3. The form of correlation affect EDA algorithms a lot

An Example: Correlation decides algorithm

- In statistical leakage analysis
 - There's no correlation: the law of large number works, analytical results available (Rao04')
 - The correlation are distance dependent: some clever methods exist based on the concepts of `kernal', provably O(N) for a wide range of situations (Heloue06', Ye09')
 - Both location dependent and distance dependent: only some grid based (and PCA based) methods with some annoying limitations (strong correlation, say) can work to some extent (NOT perfectly addressed yet!!)

Outline

- Introduction: Spatial Correlation in Random Process Variation
- Technical Background: Kriging Model and Lasso in Linear Regression
- Our Method: L1-Penalty in Kriging Model
- Experimental Results & Conclusion

Mathematical Form of Correlation

$$Y(x)=F(x)\beta+S(x)+\varepsilon$$

 $F(x)\beta$: the location dependent part

 $F(x) = (f_1(x), f_2(x), ..., f_p(x))$: base of a function space, which is previously selected

 β : the coefficients to be extracted

S(x): the distance dependent part, with stdev. σ

 $\operatorname{Corr}(x_k, x_l) = \rho_{\theta}(|x_k - x_l|), \rho_{\theta}$ is a family of parameterized functions, dependent on θ , aka correlogram

V: a correlation matrix induced by ρ_{θ} given the locations ε : non-correlated part, can be absorbed by S(x) with an extra parameter added to θ

 β , σ , θ are parameters to be extracted

Existing Extraction Methods

- Separate extraction:
 - A conventional method to first extract the loc. depend.
 part as if the residuals are not correlated
 - Mathematically not reasonable
- Kriging method:
 - Maximum likelihood method
 - Two-level optimization process

$$\min_{\beta,\sigma,\theta} g^{0}(\beta,\sigma,\theta;y,F) = 0.5 \left\{ \log |\sigma^{2}V_{\theta}| + (y-F\beta)'(\sigma^{2}V_{\theta})^{-1}(y-F\beta) \right\}$$

$$y: \text{the measured data at location } x$$

The difficulties with kriging method

- There're not always a full bunch of data
 - Kriging works better only as the data capacity grows
 - Except for specific testing wafer used only for spatial correlation study, the data are much fewer
- The function base F(x) may be a large one
 - Functions should be added to this base for different reasons aiming at process ameiloration or sth. Else
 - Thus make the coefficients possibly sparse
- There's some interaction between the two parts of correlation
 - Physically or mathematically, they aren't strictly distinct

Lasso: add robustness to linear regression when sample is small

When the data set is small, the above method can be less robust.

Lasso proposes to solve the problem with additional L_1 – norm penalty

$$\min_{\beta} 0.5(y - F\beta)'(y - F\beta) + \lambda \sum_{i=1}^{p} |\beta_i|$$

Lasso, aka. compressive sensing, is famous for its non-zero pattern detection.

Actually, it also offers more robust result even the coefficient pattern is dense

Outline

- Introduction: Spatial Correlation in Random Process Variation
- Technical Background: Kriging Model and Lasso in Linear Regression
- Our Method: L1-Penalty in Kriging Model
- Experimental Results & Conclusion

Basic idea of the method

 The basic idea is simple. As lasso like L1-norm penalty achieves success in many fields other than linear regression, it may help in our situations.

• Among those numbers to be extracted in our model. We find it is more reasonable to add such penalty on $\,\beta$

Mathematical Imitation

	Linear Regression	Spatial Correlated Data
Original Problem	$\min_{\beta} 0.5(y - F\beta)'(y - F\beta)$	$\min_{\beta,\sigma,\theta} g^{0}(\beta,\sigma,\theta;y,F) = 0.5 \left\{ \log \sigma^{2}V_{\theta} + (y - F\beta)'(\sigma^{2}V_{\theta})^{-1}(y - F\beta) \right\}$
Lasso-like L1-Norm Penalty	$\min_{\beta} 0.5(y - F\beta)'(y - F\beta) + \lambda \sum_{i=1}^{p} \beta_i $	$\min_{\beta,\sigma,\theta} g (\beta,\sigma,\theta; y, F, \lambda) = 0.5\{\log \sigma^2 V_{\theta} + (y - F\beta)'(\sigma^2 V_{\theta})^{-1}(y - F\beta)\} + \lambda \sum_{i=1}^{p} \beta_i $

To solve the proposed optimization

- Though it's more complicated than original kriging methods, we still use a similar two-level optimization scheme
 - In the top level, an general purposed optimization is used for a problem with about 3 variables
 - In the bottom level, a problem similar to Lasso is to be solved

Solve Lasso: LAR

- Least Angle Regression (LAR) is a famous technique in statistics society as a power solution to Lasso.
- LAR develops some insights of the special form to be optimized.
 - It keeps going on a 'correct' trajectory, i.e. its temporary solutions are correct for some larger $\,\lambda$, until reaching the required $\,\lambda$
 - The direction for this process is piecewise-linear. Roughly speaking, it keeps going the same direction as long as the set of parameters triggering some 'profitable' condition is not changed.
- Those observations make it of a same level of complexity as OLS, thus enable its use as an inner-loop solver

Pick a right λ

- We choose Akaike Information Criterion (AIC)
 - The complexity of the model will reduce the robustness
 - AIC provides a rigorous way to balance between accuracy and complexity
- Other candidate methods:
 - Cross Validation
 - Another criterions such as BIC etc.

Outline

- Introduction: Spatial Correlation in Random Process Variation
- Technical Background: Kriging Model and Lasso in Linear Regression
- Our Method: L1-Penalty in Kriging Model
- Experimental Results & Conclusion

Setting of the Experiments

- Experiments are carried out with atificial data, we will publish the result with silicon data in the future
- We use 9 functions in the location dependent part and Gaussion family as the correlogram family, totally 9+3=12 parameters to extract
- Noisy data are generated with various settings, both sparse and dense loc. depend. coef.
- A sample of 50 data are assumed
- Results of proposed method, original kriging, separate extraction are compared together with the oracle model.
- The major concerned criteria are prediction error and the correlation length

Comparison with original kriging

The pairwise results on predicting error with different settings

To detect the non-zero pattern

The 1st, 2nd, 4th coefficients are set as non-zero.

In most case the three coeficients are detected with about 1 other more in average

Conclusions

- The original kriging is modified to be most robust with Lasso-like L1-norm penalty.
- A solution flow, comprising of least angle regression together with criteria to pick proper weight factor of the L1-norm penalty, has been discussed in details.
- From numerical experiments, the L1-norm penalized kriging model shows improved accuracy and robustness in prediction. The results form a rigid base for applying the method to actual data.