Device-Parameter Estimation with On-Chip Variation Sensors Considering Random Variability

Ken-ichi Shinkai Masanori Hashimoto Dept. Information Systems Engineering, Osaka Univ., Japan {shinkai.kenichi, hasimoto}@ist.osaka-u.ac.jp

- 1. Introduction
- 2. Device-parameter extraction using RO-based variation sensors
- 3. Proposed method using maximum likelihood estimation
- 4. Simulation-based validation of the proposed estimation
- 5. Conclusion

Background (1 / 2)

- Process variations
 - make chip performance different chip by chip and even transistor by transistor.
 - are classified into D2D (die-to-die) and WID (within-die).
- Post-silicon performance adjustment is important.
 - e.g., adaptive body bias, supply voltage scaling.
 - Estimates of device-parameters are required for appropriate compensation.

Background (2 / 2)

- RO(ring oscillator)-based on-chip sensors are Often used for parameter estimation.
 - Easy to measure oscillating frequencies of ROs,
 - Easier to implement ROs than
 I-V curve measurement system.

- Has appropriate characteristics, i.e., averaging effect: as #RO-stages increases, σ/μ becomes smaller.
 - Conventional extraction methods assume ROs are not affected by random variations.
 - But random variations cannot be canceled out in some intelligent ROs.

Motivation of this work

 ROs highly-sensitive to a single device-parameter are proposed for more accurate estimation [1], [2].

Probability

- E.g., #RO-stages: 101
 sufficient to cancel out
 random variations
 - w/ only random variations: threshold voltage $\Delta V_{thn/p}^{\dagger}$, gate length $\Delta L_{n/p}^{\dagger}$ (n/p denotes N/PMOS)
 - #MC trials: 500

Shift of $\mu(\Delta F)$ must be considered.

- [1] B. Wan, et al., "Ring Oscillators for Single Process-Parameter Monitoring," *TSD*, 2008.
- [2] I. A. K. M. Mahfuzul, et al., "Process-sensitive Monitor Circuits for Estimation of Die-to-Die Process Variability," *TAU*, 2010, pp. 83-88.

 ΔF : shift of oscillation frequency from its nominal value in each RO

Objective

To propose a parameter-estimation method that explicitly considers the effect of random variations

- Estimate device-parameters by MLE (Maximum Likelihood Estimation).
 - Aim to make better use of information of random variations: exploit it rather than ignore.
 - Estimation targets: ΔG_x^{\dagger} and $\sigma_{\Delta R_x}^{\dagger}$.
 - Conventional methods estimate only ΔG_{x} .
 - † x: device-parameter
 - ΔG_x : global variation (same offset to all trs. on a chip)
 - ΔR_x : random variation (different tr. by tr.)

- 1. Introduction
- 2. Device-parameter extraction using RO-based variation sensors
- 3. Proposed method using maximum likelihood estimation
- 4. Simulation-based validation of the proposed estimation
- 5. Conclusion

Assumed sensors in a chip

- Use several RO-based variation sensors.
 - Each sensor instance includes N types of ROs with different structures.
 - Selection of appropriate ROs for estimation are based on orthogonality of their frequency-sensitivity vectors.

Conventional parameter estimation method

• Shift of oscillation frequency in *i*-th type of RO (RO#*i*) from its nominal value, ΔF_i , is often modeled by

$$\Delta F_i = \sum k_{xi} \Delta G_x = \boldsymbol{k}_{xi}^T \Delta \boldsymbol{G}_x. \quad \cdots (1)^{\dagger}$$

- Random variations are assumed to be canceled out.
 - ΔR_x does not appear.

X

- k_{xi} : frequency-sensitivity to variation of x at RO#i
- † Eq. (1) can be extended to 2nd or higher-order model to improve accuracy.

•
$$\Delta G_x$$
 can be estimated by $\Delta G_x = K^{-1} \Delta F = \begin{pmatrix} k_{xl}^T \\ \vdots \\ k_{xn}^T \end{pmatrix}^{-1} \Delta F. \dots (2)$

- At least n ROs are necessary for estimating n parameters.
- Estimation accuracy depends on K.

How to determine effective set of ROs

- When sensitivity vectors are orthogonal to each other, estimation of ΔG_r becomes accurate [2].
 - We derive an appropriate set of ROs with minimal RMSE (Route Mean Square Error) of angles in Eq. (3).

$$RMSE(ROset) = \sqrt{\frac{\sum_{\forall i \in (ROset) \ \forall j \in (ROset), j \neq i}}{\sum_{n} C_{2}} (degree_{ij} - 90^{\circ})^{2}} \dots (3)} \dots (3)$$

$$degree_{12}$$

$$degree_{13}$$

$$k_{x2}$$

$$degree_{23}$$

$$k_{x3}$$

 $degree_{ii}$: angle in degrees between k_{xi} and k_{xi} , $_{n}C_{2}$: the number of combinations of vectors.

 K_{r3}

Example of

 $ROset \subset (\#1, \#2, \#3)$

- 1. Introduction
- 2. Device-parameter extraction using RO-based variation sensors
- 3. Proposed method using maximum likelihood estimation
- 4. Simulation-based validation of the proposed estimation
- 5. Conclusion

Inappropriate disregard of random variations

- Assumption in conventional method is equivalent to $\mu_{\Delta Fi} = f(\Delta G_x) \dots (4)$ and $\sigma_{\Delta Fi} = 0$.
 - All ΔF_i in the chip are: $\Delta F_i = \mu_{\Delta Fi}$
 - But as demonstrated above, ΔR_x should not be ignored.
- Actual distribution of ΔF_i has some deviations.

Device-parameter extraction using MLE (1 / 2)

- Estimate the actual distribution by MLE.
 - Maximize the probability that assumed probability distributions produce measured data.

Conventional: throws away variability information, Proposed: exploits it as it is.

- Proposed extraction step:
 - 1. Model $\mu_{\Delta Fi}$ and $\sigma_{\Delta Fi}$ as $\mu_{\Delta Fi} = g(\Delta G_x, \sigma_{\Delta Rx}) \dots (5)^{\dagger},$ $\sigma_{\Delta Fi} = h(\Delta G_x, \sigma_{\Delta Rx}) \dots (6)^{\dagger}.$
- † The orders of equations could be freely chosen according to required accuracy.

Device-parameter extraction using MLE (2 / 2)

2. Find ΔG_x and $\sigma_{\Delta Rx}$ that maximize Eq. (7).

 $\prod_{s}^{S_{i}} p(\Delta F_{is}) \cdots (7) \qquad p(\Delta F_{i}): \text{ probability density function of } \Delta F_{i}$ S_{i}: the number of instances of RO#i $\Delta F_{is}: \text{ measured data from } s\text{-th instance of RO#i}$

- 1. Introduction
- 2. Device-parameter extraction using RO-based variation sensors
- 3. Proposed method using maximum likelihood estimation
- 4. Simulation-based validation of the proposed estimation
- 5. Conclusion

Experimental condition

- Target of estimation: four parameters ($V_{thn/p}$ and $L_{n/p}$)
 - We generate these parameters according to $\sigma_{\Delta G/RVthn/p} = 35$ mV, $\sigma_{\Delta G/RLn/p} = 1$ nm.
- Modeling equations:
 - Eqs. (4) and (5): 3rd polynomials, Eq. (6): 2nd polynomials.
- Sensor block consists of eight 101-stage ROs (shown in the next slide).
 - Supply voltages: 1.5, 1.2, and 0.9 ${\sf V}$

RO components and their circuit diagrams

RO No.	Component
1	Normal INV
2	INV followed by NMOS tr.
3	INV followed by PMOS tr.
4	INV followed by CMOS- controlled loads – 1
5	INV followed by CMOS- controlled loads – 2
6	Current-starved INV followed by PMOS- controlled loads [1]
7	Current-starved INV followed by NMOS- controlled loads [1]
8	Customized INV

 RO#2-7 have high sensitivity to one or two parameters.

RO components and their circuit diagrams

RO No.	Component
1	Normal INV
2	INV followed by NMOS tr.
3	INV followed by PMOS tr.
4	INV followed by CMOS- controlled loads – 1
5	INV followed by CMOS- controlled loads – 2
6	Current-starved INV followed by PMOS- controlled loads [1]
7	Current-starved INV followed by NMOS- controlled loads [1]
8	Customized INV

- Component of RO#8 is slightly modified from *L*-sensitive INV [1]
 - It has four controllable terminals to change sensitivity.
 - Selective voltages: V_{dd} , V_{bn} , V_{bp} , V_{ss} .
 - 144 (=3²4²) data can be obtained using only RO#8.

 RMSE in Eq. (3) (4 of 8 ROs are used as ROset): best = 8.60°, worst = 89.3°.

> Best (top row), worst (bottom row) ROset (Voltages enclosed by [] at RO#8 correspond to INVN, INVP, CAPN, and CAPP shown in circuit diagram.

RO No. (V_{dd})	RO No. (V_{dd})	RO No. (V_{dd})	RO No. (V_{dd})
2 (0.9)	$8 (1.5) [V_{bn}, V_{bp}, V_{bn}, V_{ss}]$	$8 (1.5) [V_{bn}, V_{ss}, V_{dd}, V_{bn}]$	$8 (1.2) [V_{bp}, V_{bp}, V_{bp}, V_{bp}]$
8 (0.9) $[V_{bp}, V_{bp}, V_{bp}, V_{bn}]$	8 (0.9) $[V_{bp}, V_{bp}, V_{bp}, V_{bp}]$	8 (0.9) $[V_{bp}, V_{bp}, V_{bp}, V_{ss}]$	8 (0.9) $[V_{dd}, V_{bp}, V_{bp}, V_{ss}]$

Validation of the proposed method (1 / 2)

30 chips are virtually fabricated with only global variations.

$$- \sigma_{\Delta RVthn/p} = \sigma_{\Delta RLn/p} = 0.$$

- Conventional computation (Eq. (4)) is used for estimating ΔG_{x} .

Absolute value of average estimate error.

RO set	ΔG_{Vth_n} [mV]	ΔG_{Vth_p} [mV]	$\Delta G_{L_n}[\text{nm}]$	$\Delta G_{L_p}[\text{nm}]$
Best	2.19	4.24	0.69	1.00
Worst	63.94	34.40	2.79	2.09

Each global variation is accurately estimated when using best ROset.

Validation of the proposed method (2 / 2)

- Proposed (MLE using Eqs. (5), (6)) and Conventional (least-square approach using Eq. (4)) are compared.
 - 3 chips are virtually fabricated.
 - Each chip has 100 sensor instances including best ROset.
 - All of sensor data are used for estimation.

Average estimate error of global variations.

Method	ΔG_{Vth_n} [mV]	ΔG_{Vth_p} [mV]	$\Delta G_{L_n}[\text{nm}]$	$\Delta G_{L_p}[\text{nm}]$
Proposed	0.54	4.03	1.23	2.11
Conventional	8.51	13.71	1.49	0.54

Proposed method improves average accuracy.

Random variations

are accurately

estimated.

Average estimate enor of studey. Of random (Proposed).			
$\sigma_{\Delta R_{Vth_n}}[\text{mV}]$	$\sigma_{\Delta R_{Vth_p}}[\text{mV}]$	$\sigma_{\Delta R_{L_n}}[\text{nm}]$	$\sigma_{\Delta R_{L_p}}[\text{nm}]$
6.30	2.91	0.13	0.10

Jan. 28, 2011

fateday, of random (Duanaged)

#instances vs. accuracy

- We demonstrate how #instances, i.e., S_i , affects accuracy.
 - Evaluated S_i : 20, 40, 60, 80.
 - For each S_i , 500 instance sets in a chip are randomly generated.
 - Distribution of estimation errors is evaluated.
- More instances, more accurate result could be obtained.
 - E.g., to suppress error of $\mu_{\sigma\Delta RVthn}$ +3 $\sigma_{\sigma\Delta RVthn}$ below 20 %, at least 60 instances are necessary in a chip.

- 1. Introduction
- 2. Device-parameter extraction using RO-based variation sensors
- 3. Proposed method using maximum likelihood estimation
- 4. Simulation-based validation of the proposed estimation
- 5. Conclusion

Conclusion

- We proposed a device-parameter estimation method with on-chip variation sensors.
 - Proposed method takes into account random variations with maximum likelihood estimation.
 - We experimentally verified that the proposed method can accurately estimate variations.

Future work

 Verifying the proposed method using actual RO-based sensors in test chips we designed.

Test chip in 65-nm process.

Thank you !