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Process variations
– make chip performance different

chip by chip and even
transistor by transistor.

– are classified into D2D (die-to-die)
and WID (within-die).

Post-silicon performance
adjustment is important.
– e.g., adaptive body bias,

supply voltage scaling.
– Estimates of device-parameters

are required for appropriate compensation.

Background (1 / 2)
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RO(ring oscillator)-based on-chip sensors are
Often used for parameter estimation.
– Easy to measure

oscillating frequencies of ROs,
– Easier to implement ROs than

I-V curve measurement system.

– Has appropriate characteristics, i.e., averaging effect: 
as #RO-stages increases, σ/μ becomes smaller.

Conventional extraction methods assume 
ROs are not affected by random variations.
But random variations cannot be canceled out
in some intelligent ROs.

Background (2 / 2)
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Motivation of this work
ROs highly-sensitive to a single device-parameter
are proposed for more accurate estimation [1], [2].

– E.g., #RO-stages: 101
sufficient to cancel out
random variations

w/ only random variations: 
threshold voltage ΔVthn/p

†,
gate length ΔLn/p

†

#MC trials: 500

RO frequency distributions
Shift of μ(ΔF) must be considered.

[1] B. Wan, et al., “Ring Oscillators for Single Process-Parameter
Monitoring,” TSD, 2008.

[2] I. A. K. M. Mahfuzul, et al., “Process-sensitive Monitor Circuits for
Estimation of Die-to-Die Process Variability,” TAU, 2010, pp. 83-88.

(n/p denotes N/PMOS)

† μ(ΔVthn/p) = μ(ΔLn/p) = 0, 
σ(ΔVthn/p) = 35 mV, σ(ΔLthn/p) = 1 nm
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RO w/ normal INV
μ(ΔF) = - 1.4%, σ(ΔF) = 1.2%

RO w/ Vthn-sensitive INV
μ(ΔF) = - 10.8%, σ(ΔF) = 3.8%

ΔF: shift of oscillation frequency from
its nominal value in each RO
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Objective

To propose a parameter-estimation method that
explicitly considers the effect of random variations

Estimate device-parameters by MLE
(Maximum Likelihood Estimation).
– Aim to make better use of information of random 

variations: exploit it rather than ignore.
– Estimation targets: ΔGx† and σΔRx

†.
Conventional methods estimate only ΔGx.

† x: device-parameter
ΔGx: global variation (same offset to all trs. on a chip)
ΔRx: random variation (different tr. by tr.)
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Use several RO-based variation sensors.
– Each sensor instance includes N types of ROs with 

different structures.
– Selection of appropriate ROs for estimation are based on

orthogonality of their frequency-sensitivity vectors.

Assumed sensors in a chip

Sensor
instance

#1

Sensor
instance

#2

Sensor
instance

#S

RO#1

RO#N

Questions on implementation:
How to choose N ROs?
How many instances
necessary? 
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Conventional parameter estimation method

Shift of oscillation frequency in i-th type of RO (RO#i)
from its nominal value, ΔFi, is often modeled by

– Random variations are
assumed to be canceled out.

ΔRx does not appear.

ΔGx can be estimated by

– At least n ROs are necessary for estimating n parameters.
– Estimation accuracy depends on     . 

†)1(. Lx
T
xiΔGk=Δ=Δ ∑

x
xxii GkF kxi: frequency-sensitivity

to variation of x at RO#i

)2(.

1

1 LM ΔF
k

k
ΔFKΔG

T
xn

T
x1

x

−

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

==

† Eq. (1) can be extended to 2nd

or higher-order model
to improve accuracy.

K



Jan. 28, 2011 ASP-DAC 2011 10

When sensitivity vectors are orthogonal to each 
other, estimation of ΔGx becomes accurate [2].
– We derive an appropriate set of ROs with minimal 

RMSE (Route Mean Square Error) of angles in Eq. (3).

How to determine effective set of ROs
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ROset: group of ROs used for estimation,
degreeij: angle in degrees between kxi and kxj,

nC2: the number of combinations of vectors.
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Assumption in conventional method is equivalent to
μΔFi = f(ΔGx) … (4) and σΔFi = 0.
– All ΔFi in the chip are: ΔFi = μΔFi

– But as demonstrated above, ΔRx should not be ignored.

Inappropriate disregard of random variations

Probability

ΔFi

iFΔμ

iFΔσ

Probability

ΔFi

( )xGΔf
iF =Δμ

Actual distribution of ΔFi has some deviations.

How do we characterize
distribution?
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Estimate the actual distribution by MLE.
– Maximize the probability that 

assumed probability distributions produce measured data. 

Proposed extraction step:
1. Model μΔFi and σΔFi as

μΔFi = g(ΔGx , σΔRx) …(5)†, 
σΔFi = h(ΔGx, σΔRx) …(6)†.

Device-parameter extraction using MLE (1 / 2)

† The orders of equations could be freely chosen
according to required accuracy.

It is assumed
ΔFi ~ N(μΔFi, σΔFi

2).

Conventional: throws away variability information,
Proposed: exploits it as it is.

Probability

ΔFi

( )
xRxG ΔσΔ ,g

iF =Δμ

( )
xRxΔG Δσ,h

iF =Δσ
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Device-parameter extraction using MLE (2 / 2)

2. Find ΔGx and σΔRx that maximize Eq. (7).

– Why this equation?
The likelihood function of ΔFi:
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p(ΔFi): probability density function of ΔFi
Si: the number of instances of RO#i
ΔFis: measured data from s-th instance of RO#i

ΔFis

p(ΔFis)

Probability

ΔFi

( )
xRxG ΔσΔ ,g

iF =Δμ

( )
xRxΔG Δσ,h

iF =Δσ

ΔF1

ΔF2

ΔFn

Using n ROs
-> the overall likelihood

function becomes Eq. (7).

Maximize the likelihood that
each probability density function of
ΔFi produces measured data set.
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Experimental condition

Target of estimation: four parameters (Vthn/p and Ln/p)
– We generate these parameters according to
σΔG/RVthn/p = 35 mV, σΔG/RLn/p = 1 nm.

Modeling equations:
– Eqs. (4) and (5): 3rd polynomials, Eq. (6): 2nd polynomials.
Sensor block consists of eight 101-stage ROs

(shown in the next slide).
– Supply voltages: 1.5, 1.2, and 0.9 V
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RO components and their circuit diagrams

RO#2

RO#4

RO 
No. Component

1 Normal INV
2 INV followed by NMOS tr.
3 INV followed by PMOS tr.

4 INV followed by CMOS-
controlled loads – 1

5 INV followed by CMOS-
controlled loads – 2

6
Current-starved INV
followed by PMOS-
controlled loads [1]

7
Current-starved INV
followed by NMOS-
controlled loads [1]

8 Customized INV

RO#2-7 have high sensitivity
to one or two parameters.
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Component of RO#8 is slightly 
modified from L-sensitive INV [1]
– It has four controllable terminals

to change sensitivity.
Selective voltages: Vdd, Vbn, Vbp, Vss.
144 (=3242) data can be obtained
using only RO#8.

RO components and their circuit diagrams

INVN

INVP
CAPP

CAPN

RO#8

RO 
No. Component

1 Normal INV
2 INV followed by NMOS tr.
3 INV followed by PMOS tr.

4 INV followed by CMOS-
controlled loads – 1

5 INV followed by CMOS-
controlled loads – 2

6
Current-starved INV
followed by PMOS-
controlled loads [1]

7
Current-starved INV
followed by NMOS-
controlled loads [1]

8 Customized INV

Vbp

Vbn

L-sensitive INV [1]
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Best/worst ROset

RMSE in Eq. (3) (4 of 8 ROs are used as ROset):
best = 8.60o, worst = 89.3o.

Best (top row), worst (bottom row) ROset
(Voltages enclosed by [] at RO#8 correspond to 

INVN, INVP, CAPN, and CAPP shown in circuit diagram.
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Validation of the proposed method (1 / 2)
30 chips are virtually fabricated
with only global variations.
– σΔRVthn/p = σΔRLn/p = 0.
– Conventional computation

(Eq. (4)) is used for
estimating ΔGx.
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Each global variation is accurately
estimated when using best ROset.
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Proposed (MLE using Eqs. (5), (6)) and Conventional
(least-square approach using Eq. (4)) are compared. 
– 3 chips are virtually fabricated.

Each chip has 100 sensor instances including best ROset.
All of sensor data are used for estimation.

Validation of the proposed method (2 / 2)

Average estimate error of global variations.

Average estimate error of stddev. of random (Proposed).

Proposed
method
improves
average
accuracy.

Random variations
are accurately
estimated.
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#instances vs. accuracy
We demonstrate how #instances, i.e., Si, affects accuracy.
– Evaluated Si: 20, 40, 60, 80.

For each Si, 500 instance sets in a chip are randomly generated.

– Distribution of estimation errors is evaluated.
More instances, more accurate result could be obtained.
– E.g., to suppress error of μσΔRVthn+3σσΔRVthn below 20 %,

at least 60 instances are necessary in a chip.
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Conclusion

We proposed a device-parameter estimation 
method with on-chip variation sensors.

– Proposed method takes into account
random variations with maximum likelihood estimation.

– We experimentally verified that
the proposed method can accurately estimate variations.

Future work
– Verifying the proposed method 

using actual RO-based sensors
in test chips we designed.

Test chip in 65-nm process.
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Thank you !
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