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Introduction

o0 The successive approximation register (SAR)
ADC is widely used in modern mixed-signal
SOC designs
o High power efficiency and low area overhead
o Component mismatch limits its performance

o ADC testing in SOC design is difficult
o Requires high quality test stimulus
o Lengthy testing
o 1/O accessibllity is limited



Previous Works
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o Testing [Goyal, ITC 2005]

o Selective code testing to reduce test time
o Incapable of handling missing code issue
o The required test ramp is impractical for on-chip generation

o Calibration [Liu, ISSCC 2009]

o Employs a slow but accurate reference ADC and LMS technique
to perform background calibration

o The reference ADC usually incurs significant area overhead

o The LMS algorithm demands intensive computation and lengthy
calibration time



The Proposed Technique

o This paper presents a self-testing and
calibration technigue for embedded SAR ADC

o Test the SAR ADC by measuring the major carrier transitions
(MCTs) of its DAC capacitor array

o Calibrate the SAR ADC by eliminating all the missing codes
digitally

o The MCTs of the DAC capacitor array are

directly generated and measured by

o The comparator in the SAR ADC
o An additional DfT DAC (d-DAC)



The Advantages and Contributions

o The ideal MCT voltage is just 1 LSB

o The required analog measurement range is small
o Simplifies the d-DAC implementation

o The control signals and test responses are all-
digital
o One can reuse the on-chip digital resources for test
result analysis and missing code calibration

o This further reduces the incurred design and area
overhead



Outline

-
o Introduction

o Preliminaries

o The proposed Technique
o Simulation Results

o Conclusion




Basic SAR ADC Structure

0o The SAR ADC Is consisted of

o Binary-weighted DAC capacitor array
o Comparator
o SAR Control logic
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Conversion 1: Sample Mode
]

o Sample the input voltage into the capacitors
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Conversion 2: Hold Mode
]

0 Sy open, and all the top plates are connected
to ground

_—————




Conversion 3: Redistribution Mode (1/2)
_—

o Iterative binary search process (from MSB to LSB)

o First, the top plate of C; is connected to V.
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Conversion 3: Redistribution Mode (2/2)

o VX Is then compared to ground
o Vx>0, D;=0 and the top plate of C; will reconnect to ground
o Vx<0,Ds=1

o After Dy IS resolved, the process moves down to next bit.
o N iterations is required for N-bit ADC

o Let C, (i) denote the capacitance connected to V,,
o VX in i-th iteration can be expressed as

v, =, + ey
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DAC MCT Testing (1/3)

o SAR ADC linearity can be characterized by measuring
the major carrier transitions (MCTs) of the DAC

o The code transition level (V;) of Dy, ---D,D,
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o For the ADC code in the form of 2'-1, the code width is
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DAC MCT Testing(2/3)
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o All the code widths can be
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DAC MCT Testing (3/3)
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Errors in SAR ADC
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o Comparator offset

o Causes global shift to the transfer curve
o Can be compensated by auto-zeroing technigues

o Capacitor mismatch C, -

. C ref
o Affect the code width total
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The Proposed DfT Architecture
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MCT Generation

o The SAR ADC linearity can be derived by measuring the
DAC MCTs

o The most straightforward way Is to use a precise ramp
to stimulate the ADC and observe the output codes

o Long conversion time (N+2 cycles for each AD conversion)

o Here, we directly control the DAC to generate the MCTs
for measurement

o Only three cycles for each MCT generation



MCT Generation: 0111->1000 (1/3)
_—

o Connect the top plates of LSB capacitors to V.
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MCT Generation: 0111->1000 (2/3)
_—

0 Sy open, and all the top plates are connected
to ground 2
Z'=0CJ’
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MCT Generation: 0111->1000 (3/3)
_—

o The top plate of C; is connected to V,;
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MCT Characterization

o MCTs are measured by a short linear ramp
together with the internal comparator
o The test ramp Is generated by d-DAC
o FSR is 4 LSBs of the ADC
o The resolution is 6-bit



The Testing Flow
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Quantization Error Removal

o Calculate the difference between the actual
ADC FSR and its ideal value, and linearly scale
back this difference to all the existing codes

5_ PSRy, -
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Missing Code Calibration

S
o Compensation codes are computed according
to m;’s.
o The calibrated code Is obtained by subtracting
the compensation code from the raw code.
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Simulation Setup

o 10-bit SAR ADC with conversion radix set to 1.95

o Capacitor mismatch is set within 5%
o Comparator offset is set within 1 LSB

o A 6-bit DAC is designed for test stimulus generation
o The FSR is only 4 LSBs of the ADC
o 2 LSBs for analog measurement and 2 LSBs for offset tolerance

o Noise on the signal path is Gaussian with 0.1 LSB
standard deviation
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Testing Results

o Histogram testing results
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Calibration Results
1

0 Before Calibration 0 After Calibration
o DNL/INL: -1/-16.53 LSB o DNL/INL: -0.42/-0.57 LSB
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Massive Simulation

N
o The proposed technique is applied to 1000 SAR ADCs

o The DNL/INL test errors are all within 0.1/0.3 LSB

o The average DNL/INL are improved from 1/16.75 LSB to
0.61/0.48 LSB
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Conclusion

o This paper presents a simple yet efficient
technique for testing and calibrating the
embedded SAR ADC

o Simulation results validate the effectiveness and
robustness of the proposed technique

o A prototype is currently being designed for
further silicon validation
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