

A Self-Testing and Calibration Method for Embedded Successive Approximation Register ADC

X.-L. Huang*+, P.-Y. Kang*, H.-M. Chang*, J.-L. Huang*, Y.-F. Chou+, Y.-P. Lee+, D.-M. Kwai+, and C.-W. Wu+

* National Taiwan University, Taiwan

* Industrial Technology Research Institute, Taiwan

#University of California, Santa Barbara, USA

Outline

- □ Introduction
- Preliminaries
- The proposed Technique
- Simulation Results
- Conclusion

Introduction

- The successive approximation register (SAR)
 ADC is widely used in modern mixed-signal
 SOC designs
 - High power efficiency and low area overhead
 - Component mismatch limits its performance
- ADC testing in SOC design is difficult
 - Requires high quality test stimulus
 - Lengthy testing
 - I/O accessibility is limited

Previous Works

Testing [Goyal, ITC 2005]

- Selective code testing to reduce test time
- Incapable of handling missing code issue
- The required test ramp is impractical for on-chip generation

Calibration [Liu, ISSCC 2009]

- Employs a slow but accurate reference ADC and LMS technique to perform background calibration
- The reference ADC usually incurs significant area overhead
- The LMS algorithm demands intensive computation and lengthy calibration time

The Proposed Technique

- This paper presents a self-testing and calibration technique for embedded SAR ADC
 - Test the SAR ADC by measuring the major carrier transitions (MCTs) of its DAC capacitor array
 - Calibrate the SAR ADC by eliminating all the missing codes digitally
- The MCTs of the DAC capacitor array are directly generated and measured by
 - The comparator in the SAR ADC
 - An additional DfT DAC (d-DAC)

The Advantages and Contributions

- The ideal MCT voltage is just 1 LSB
 - The required analog measurement range is small
 - Simplifies the d-DAC implementation

- The control signals and test responses are alldigital
 - One can reuse the on-chip digital resources for test result analysis and missing code calibration
 - This further reduces the incurred design and area overhead

Outline

- Introduction
- Preliminaries
- The proposed Technique
- Simulation Results
- Conclusion

Basic SAR ADC Structure

- The SAR ADC is consisted of
 - Binary-weighted DAC capacitor array
 - Comparator
 - SAR Control logic

$$C_i = 2^i \cdot C_0$$
$$C_r = C_0$$

$$C_r = C_0$$

Conversion 1: Sample Mode

Sample the input voltage into the capacitors

Conversion 2: Hold Mode

Conversion 3: Redistribution Mode (1/2)

- Iterative binary search process (from MSB to LSB)
- \square First, the top plate of C_3 is connected to V_{ref}

$$V_X = -V_{in} + \frac{C_3}{C_{total}} V_{ref} = -V_{in} + \frac{1}{2} V_{ref}$$

Conversion 3: Redistribution Mode (2/2)

- Vx is then compared to ground
 - □ Vx > 0, D_3 =0 and the top plate of C_3 will reconnect to ground
 - $\nabla x < 0, D_3 = 1$
- \square After D_3 is resolved, the process moves down to next bit.
 - N iterations is required for N-bit ADC
- Let $C_H(i)$ denote the capacitance connected to V_{ref} ,
 - Vx in i-th iteration can be expressed as

$$V_X = -V_{in} + \frac{C_H(i)}{C_{total}} V_{ref}$$

DAC MCT Testing (1/3)

- SAR ADC linearity can be characterized by measuring the major carrier transitions (MCTs) of the DAC
- □ The code transition level (V_T) of $D_{N-1} \cdots D_1 D_0$

$$V_T(D_{N-1}\cdots D_1D_0) = \frac{\sum_{i=0}^{N-1}D_i\cdot C_i}{C_{total}}\cdot V_{ref}$$

 \square For the ADC code in the form of 2^{i} -1, the code width is

$$V_{CW}(2^{i}-1) = V_{T}(2^{i}) - V_{T}(2^{i}-1) = \frac{C_{i} - \sum_{j=0}^{i-1} C_{j}}{C_{total}} \cdot V_{ref}$$

DAC MCT Testing(2/3)

S2

□ All the code widths can be expressed by $V_{CW}(2^i - 1)$

 $V_{CW}(2^i-1)$ is also known as the same major carrier transition of the DAC

 Many code transitions share the same capacitor switching activities

Binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14

15

1111

DAC MCT Testing (3/3)

S1	
0000	0
0001	_1_
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

S2	
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

S 3		
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	
1000	8	
1001	9	
1010	10	
1011	11	
1100	12	
1101	13	
1110	14	
1111	15	

Errors in SAR ADC

- Comparator offset
 - Causes global shift to the transfer curve
 - Can be compensated by auto-zeroing techniques
- Capacitor mismatch
 - **■** Affect the code width

$$V_{CW}(2^{i}-1) = \frac{C_{i} - \sum_{j=0}^{i-1} C_{j}}{C_{total}} \cdot V_{ref}$$

Outline

- Introduction
- Preliminaries
- □ The proposed Technique
- Simulation Results
- Conclusion

The Proposed DfT Architecture

MCT Generation

- The SAR ADC linearity can be derived by measuring the DAC MCTs
- The most straightforward way is to use a precise ramp to stimulate the ADC and observe the output codes
 - Long conversion time (N+2 cycles for each AD conversion)
- Here, we directly control the DAC to generate the MCTs for measurement
 - Only three cycles for each MCT generation

MCT Generation: 0111->1000 (1/3)

 \square Connect the top plates of LSB capacitors to V_{ref}

MCT Generation: 0111->1000 (2/3)

 \square S_g open, and all the top plates are connected to ground

$$V_X = -V_T(0111) = -\frac{\sum_{j=0}^{2} C_j}{C_{total}} \cdot V_{ref}$$

MCT Generation: 0111->1000 (3/3)

 \square The top plate of C_3 is connected to V_{ref}

$$V_X = V_{CW}(0111) = V_T(1000) - V_T(0111) = \frac{C_3 - \sum_{j=0}^{2} C_j}{C_{total}} \cdot V_{ref}$$

MCT Characterization

- MCTs are measured by a short linear ramp together with the internal comparator
 - The test ramp is generated by d-DAC
 - FSR is 4 LSBs of the ADC
 - The resolution is 6-bit

The Testing Flow

Quantization Error Removal

 Calculate the difference between the actual ADC FSR and its ideal value, and linearly scale back this difference to all the existing codes

$$\delta = \frac{FSR_{est} - FSR_{ideal}}{n_{code}}$$

$$V_{CW}(i)' = V_{CW}(i) - \delta$$
, if $V_{CW}(i) \neq 0$

Missing Code Calibration

- Compensation codes are computed according to m_i's.
- The calibrated code is obtained by subtracting the compensation code from the raw code.

Outline

- Introduction
- Preliminaries
- The proposed Technique
- □ Simulation Results
- Conclusion

Simulation Setup

- 10-bit SAR ADC with conversion radix set to 1.95
 - Capacitor mismatch is set within 5%
 - Comparator offset is set within 1 LSB
- A 6-bit DAC is designed for test stimulus generation
 - The FSR is only 4 LSBs of the ADC
 - 2 LSBs for analog measurement and 2 LSBs for offset tolerance
- Noise on the signal path is Gaussian with 0.1 LSB standard deviation

Testing Results

- Histogram testing results
 - Noise free
 - Average code hit is 16
 - The required test cycles is about 160K
 - DNL/INL: -1/-16.53 LSB

- The proposed technique
 - Gaussian noise with 0.1 LSB standard deviation
 - Each MCT is sampled 10 times
 - The required test cycles is about 0.5K
 - DNL/INL: -1/-16.53 LSB

Calibration Results

- Before Calibration
 - DNL/INL: -1/-16.53 LSB

After Calibration

DNL/INL: -0.42/-0.57 LSB

All of the missing codes are eliminated

Massive Simulation

- The proposed technique is applied to 1000 SAR ADCs
- The DNL/INL test errors are all within 0.1/0.3 LSB
- The average DNL/INL are improved from 1/16.75 LSB to 0.61/0.48 LSB

Outline

- Introduction
- Preliminaries
- The proposed Technique
- Simulation Results
- □ Conclusion

Conclusion

 This paper presents a simple yet efficient technique for testing and calibrating the embedded SAR ADC

 Simulation results validate the effectiveness and robustness of the proposed technique

 A prototype is currently being designed for further silicon validation