Energy/Reliability Trade-offs in Fault-Tolerant Event-Triggered Distributed Embedded Systems

Junhe Gan¹, Flavius Gruian², Paul Pop¹, Jan Madsen¹

¹ Technical University of Denmark, Denmark ² Lund University, Sweden

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)_i}{i!}$

DTU Informatics Department of Informatics and Mathematical Modeling

Motivation

- Newer technologies are leading to:
 - Higher power density
 - Increased likelihood of transient faults
- A lot of research on **energy/performance trade-offs** using DVFS:
 - Scaling voltage and frequency can reduce the energy consumption, but it prolongs the tasks execution time.
- We focus on **energy/reliability trade-offs** in this paper:
 - Scaling voltage and frequency can reduce the energy consumption, but it increases the number of transient faults exponentially.
 - This is orthogonal to peak temperature minimization used to increase the life-time of a system.

Outline

System Models and Schedulability Analysis

- Architecture model
- Reliability model
- Application model
- Schedulability analysis
- Power model
- Energy/reliability trade-off model
- Problem Formulation
- Motivational Example
- Optimization Strategy
 - TABU search-based algorithm
- Experimental Results
- Conclusion and Contributions

Architecture Model

- A set of heterogeneous processing elements interconnected by a communication channel
- Each processing element might have a set of operating modes
- For each operating mode we know (frequency: f_i^{N_j}, voltage: v_i^{N_j}, power dissipation: p_i^{N_j})

 N_1

bus

			N_1		N_2			
	Operating	Freq.	Volt.	Power	Freq.	Volt.	Power	
N_2	Modes	[MHz]	[V]	[W]	[MHz]	[V]	[W]	
	1	333	1.2	4	166	1.1	2	
	2	666	1.4	12	333	1.25	4.5	
	3	1000	1.6	25	500	1.5	11	

Reliability Model

Application Model

Application Model:

- A set of periodic tasks
- For each task τ_i , we know
 - $(C_i^{N_j}, T_i, D_i)$
 - Unique priority
 - Number of replicas k_i (critical task: $k_i > 0$, non-critical task: $k_i = 0$)
- Reliability goal R_g .
 - If reliability is lower, the no. of replicas is not enough to tolerate the faults.

Γ'	$C_i^{N_1}$	$C_i^{N_2}$	$T_i = D_i$	Priority
τ_1	7	14	50	1
τ_2	6	12	100	4
τ_3	5	10	50	2
τ_4	8	16	100	5
τ'_1	7	14	50	3
τ'_2	6	12	100	6

Schedulability Analysis

- Tasks are scheduled by fixed-priority preemptive scheduling.
- We use response time analysis to calculate the worst-case response time r_i for each task.
- We use the **degree of schedulability** r_S to measure which design alternative is "more schedulable".

Energy Model

Energy consumption in **power-aware processing elements**

$$E_{s} = \sum_{\tau_{i} \in \Gamma} \left[\frac{T_{\Gamma}}{T_{i}} \right] \times p_{l}^{N_{j}} \times c_{i}^{l} + O$$

 $\begin{bmatrix} T_{\Gamma} \\ T_{i} \end{bmatrix}$: the number of τ_{i} 's jobs within the application period T_{Γ} $p_{l}^{N_{j}} \times c_{i}^{l}$: the energy consumption of τ_{i} O: the sum of mode switching overheads

Energy model is from: E. Bini, G. Buttazzo and G. Lipari, "Minimizing CPU energy in realtime systems with discrete speed management", Embedded Computing Systems, 31(8), 2009.

Energy/reliability Trade-off Model

The fault rate λ increases exponentially when

the normalized voltage V and the normalized frequency F decreases

 $\lambda(F,V) = \lambda_0 \cdot F^{\alpha} \cdot 10^{-\beta V}$

The equation is adapted from: D. Zhu and H. Aydin, "Reliability-Aware Energy Management for Periodic Real-Time Tasks", IEEE Transactions on Computers, 58(10), pp. 1382 - 1397, 2009.

Problem Formulation

• Given:

- Application and architecture models
- Reliability goal and corresponding number of replicas for each task

Determine offline:

- the mapping of each task to processing element
- the operating mode for executing each task

Such that:

- all tasks meet their timing requirements
- the application reliability meets the given reliability goal
- the energy consumption of the system is minimized

Motivational Example

Γ'	$C_i^{N_1}$	$C_i^{N_2}$	$T_i = D_i$	Priority		N_1				N_2		
τ_1	7	14	50	1	Operating	Freq.	Volt.	Power	Freq.	Volt.	Power	
τ_2	6	12	100	4	Modes	[MHz]	[V]	[W]	[MHz]	[V]	[W]	
τ_3	5	10	50	2	1	333	1.2	4	166	1.1	2	
τ_4	8	16	100	5	2	666	1.4	12	333	1.25	4.5	
τ'_1	7	14	50	3	3	1000	1.6	25	500	1.5	11	
τ'_2	6	12	100	6		$\lambda_0 = 10^{-6}, \alpha = -4, \beta = -0.04$						

Application and architecture

Initial solution: no voltage and frequency scaling

- Runs all the tasks in the maximum speed operating mode and maps the tasks on the low power PEs.
- $E_0 = 1312$, $R_s^0 = 0.999996$.
- The given reliability goal: R_g=1-10(1-R_s⁰)=0.99996
 which means that we accept at most a 10 times decrease in reliability.

Motivational Example

Reduce energy by 42.58%. Prob. of failure increased by 160 times (>> 10 times).

Energy/reliability trade-off optimization

Reduce energy by 42.13%. Prob. of failure increased by 7 times (< 10 times).

Energy/Reliability Trade-off at Runtime

Further energy saving in online optimization without impacting the reliability goal

Reduce energy by 50.66%. Prob. of failure increased by 10 times (= 10 times).

Optimization Strategy

Optimization Problem

- NP-hard
- Minimize the cost function:

$$Cost(S) = E_{S} + W_{R} \cdot \max(0, R_{g} - R_{s}) + W_{r} \cdot \max(0, r_{s})$$

Energy Reliability Schedulability

• Use a **TABU search-based algorithm** to explore the design space

- Iteratively explores neighborhood solutions by
 - mapping moves
 - operating mode moves
- Avoid being stuck in local optimum
- Prevents cycling back to previously visited solutions

TABU Search-based Algorithm

Mapping moves

TABU Search-based Algorithm

•First attempt An improved solution

•Otherwise Randomly select a non-improving and not-tabu solution

•Maintenance of **TABU-list**

Experimental Results

Reliability improvement for different size of systems

	Numbers of			MV	FS-	MVFS		
Test	PEs	Orig.	Repl.	θ	Saved	θ	Saved	
Set		Tasks	Tasks	[times]	E [%]	[times]	E [%]	
1	2	8	2	166	28.23	10	24.64	
2	4	31	8	112	28.56	10	25.28	
3	4	42	11	137	30.47	10	26.04	
4	6	63	16	104	25.92	10	21.92	
5	6	84	21	57	22.78	10	20.57	

 $\theta = \frac{1 - R_s}{1 - R_s^0}$: measures the reliability degeneration

(i.e. how many times the prob. of failure increases)MVFS⁻: optimization without concern for reliabilityMVFS: energy/reliability trade-off optimization

Experimental Results

Reliability improvement as system utilization increases

	Numbers of			Initial	MVFS-		MVFS	
Test	PEs	Orig.	Repl.	Util.	θ	Saved	θ	Saved
Set		Tasks	Tasks	[%]	[times]	E [%]	[times]	E [%]
1	3	20	5	27.21	198	29.57	10	25.00
2	3	20	5	41.00	121	26.55	8	23.02
3	3	20	5	52.73	101	25.26	9	21.05
4	3	20	5	61.56	72	22.94	10	20.09
5	3	20	5	71.98	7	12.76	7	12.76

Experimental Results

Reliability improvement for real-life case studies

	Numbers of			MV	FS ⁻	MVFS	
Benchmarks	PEs	Orig.	Repl.	θ	Saved	θ	Saved
		Tasks	Tasks	[times]	E [%]	[times]	E [%]
networking-cords	2	13	3	141	28.01	10	20.49
auto-indust-cords	4	24	6	77	22.68	10	17.87
telecom-cords	4	30	8	129	28.16	9	19.57
3 Apps together	6	67	17	64	15.26	10	13.86
Smart-phone	2	61	16	60	18.71	9	15.23

Conclusion and Contributions

Conclusion:

We are able to reduce the negative impact of energy minimization on reliability with minimal decrease in energy savings.

Contributions:

- Considered energy/reliability trade-offs
 - Proposed an optimization algorithm for the energy/reliability trade-off problem