

ASP-DAC 2011 Designer's Forum Session 8D-3: State-of-The-Art SoCs and Design Methodologies

Design Constraint for Fine Grain Supply Voltage Control LSI

January 28, 2011

Atsuki Inoue

Platform Technologies Laboratories Fujitsu Laboratories Ltd.

Agenda

Background

- Fine grain supply voltage control
- Energy gain concept
- Power gating case
 - Various energy losses
 - Results with simple assumption
 - Modification for actual devices
 - Comparison with simulation results
 - Minimum sleep duration time
- DVFS* case (results only)

Summary

General expectation for fine grain supply controling

- Concept of supply voltage control:
 - Collaboration between power supply unit and user circuit optimizes energy consumption
 - Power gating and DVFS are typical controls.
- Two types of grain size
 - Grain size in time domain
 - Grain size in space domain
- General expectation
 - Fine grain control will improve power efficiency.

We will discuss the time domain control in this paper.

Energy gain concept to derive design constraint

Dissipated energy when supply voltage control technique is applied.

- Energy for circuit operation itself
- Energy overhead for changing supply voltage

Dissipated energy when supply voltage control technique is not applied.

Energy for circuit operation itself

Power gating case

Energy losses at power gating

- (a) Switching energy of gating transistor
- (b) Switching energy of isolation gates
- (c) Storing/restoring energy for internal information
- (d) Charging/discharging energy of virtual power line

Only (d) is dependent of sleep duration time

(a)-(c) is independent of sleep duration time.

Start with the following simple assumptions.

- 1. Leakage current is independent on drain voltage.
- 2. Consider charging energy of virtual power line only.

(Other energy losses (a)-(c) are ignored.)

Then we modify the theory excluding these assumptions

Energy with power gating : Energy without power gating :
$$\begin{split} E_a &= E_1 + E_2 + E_3 \\ E_{na} &= I_{off} V_{dd} \tau = I_{off} V_{dd} \left(\tau_1 + \tau_2 + \tau_{flat} \right) \end{split}$$

Minimum sleep duration time

FUJITSU

Leakage current dependence on drain voltage

Actual transistors have DIBL* effects and leakage current does depend on drain voltage.

FUÏITSU

(a) & (c) are proportional to decoupling capacitor C_p

- Total load capacitance of power domain C_L is proportional to C_p due to power line noise constraint.
- Capacitance of gating Tr. C_x is proportional to C_L due to IR drop voltage limitation.
- Capacitance of storage elements is proportional to total load capacitance C_L .
- (b) is small enough to be ignored for usual cases.

We can assume other
energy loss
$$E_{ov}$$
 is
proportional to C_p .
 $E_{ov} = z * C_p V_{dd}^2$
 $z = 20\%$ typical
 z : Energy overhead factor

$$\frac{\frac{C_L}{C_p} \approx \frac{v_{noise}}{\alpha}}{\frac{C_x}{C_p} \approx \frac{f_{op}(Circuit)}{f_T(GatingTransistor)}}$$

Energy gain diagram for power gating

Including other energy loss and non-constant leakage current effect

The modified theory predicts:

Longer sleep time gives higher energy gain.

> When $\tau \to \infty$, $n \to \infty$

FUÏTSU

Stronger DIBL effect gives higher gain and shorter minimum sleep duration time.

$$au_{\min} = F_{leak} au_{\min}^0$$

When β is larger, F_{leak} is smaller.

$$F_{leak} = 0.56 \sim 0.7$$
 (1 < β < 2)

(Correction factor)

Comparison with simulation results

FUJITSU

Target circuit : 1.1K gates

Which design parameters determines τ_{\min}^0 ? Fujitsu

Minimum duration

$$\tau_{\min}^{0} = \frac{C_p V_{dd}}{I_{off} (V_{dd})}$$

- Discharging time from V_{dd} to gnd.
- It does not depend on power domain size.

 C_p : Virtual power line cap.

 C_L : Average load cap.

Evaluation of τ_{\min}^0 value

FUJITSU

Restriction of supply voltage $\left(\frac{C_p}{C_L}\right)_{gate} \approx 5$ fluctuation Ex. Activity factor α =25%,

 $\Delta V/V_{dd}$ = 5%

Assume process/temperature coefficient to be 100

$$\tau_g \approx 8 \, ps - 40 \, ps \qquad \text{*Low standby power technology} \\ \hline \therefore \tau_{\min}^0 \approx 5 \, \mu s - 60 \, \mu s \qquad \text{}$$

Relatively long time constant compared with clock cycle time

* From ITRS roadmap 2009

$$\tau_{\min}^{0} \approx \frac{1}{N_{g}} \left(\frac{C_{p}}{C_{L}} \right)_{gate} * \left(\frac{Ion}{Ioff} \right)_{Tr.} * Tcycle$$

 N_g : Gate number per one pipeline stage

When

 $N_g = 18$ FO4 (Power performance optimized design*)

$$\tau_{\min}^0 \approx (3 \sim 8) \times 10^4 T_{cycle}$$

*V. Zyuban et. al., "Integrated Analysis of Power and Performance for Pipelined Microprocessors," *IEEE Trans. On Computer*, pp.1004-1016, Vol.53, No.6, Aug. 2004.

FUÏITSU

DVFS case (results only)

Minimum DVFS cycles

FUJITSU

Power configuration

- Larger C_p , Larger N_{min}^{0}
- Higher efficiency of power supply Lower efficiency of power supply
- Smaller C_p , Smaller N_{min}^{0}

Energy gain diagram for DVFS

FUJITSU

Summary

	Power gating	DVFS
Minimum sleep duration	$\sigma^0 - C_p V_{dd}$	C_p
Minimum cycle number	$l_{\min} - I_{off}$	$N_{\rm min} = \frac{1}{\alpha C_L}$
Correction factor	$F_{leak} = 0.56 \sim 0.70$	$F_{leak} = 0.56 \sim 0.86$
		$F_{\text{supply}} = 1 \sim \infty$
Maximum energy gain	$n \to \infty$, when $\tau \to \infty$	$n \to \frac{x+k}{x(1+k)} \frac{1}{x^2}$
		, when $N \to \infty$
Important design parameters	$rac{I_{on}}{I_{off}}, au_{g}$	1. Power supply configuration C_p 2. Efficiency $\eta_{d,l}$

FUJTSU

shaping tomorrow with you