

An RTL-to-GDS2 Design Methodology for Advanced System LSI

Jan. 28. 2011 Nobuyuki Nishiguchi Semiconductor Technology Advanced Research Center (STARC)

Contributing to a Bigger Application Ecosystem

What system LSI do we make?

How do we design easily ?

Design Methodology

- What design steps are required?
- What kind of data and design constraints must be created?
- What kind of design information must be verified?
- What kind of information must be passed to next design stage?
- How can manufacturability be assured at the design stage?
- How variations must be taken care?

Target System LSI and Design Technology

Target System LSI (44Mgates, 1GHz, 32nm)

Design productivity

- •Design and manufacturing aware integrated design flow
- •Chip feasibility estimation technology
- •Parallel and distributed processing

Low power

- Power reduction technology
 DVFS
 - •Efficient Low Power implementation technology
- •RTL power estimation and optimization
- Variation aware
 - Variation tolerant clock
 - Integrated variation aware analysis
 Power, Thermal, Noise, Cross talk, Stress/Litho/CMP analysis

Manufacturing aware

Integrated litho, manufacturing defect and dummy fill aware design technology
Electrical DFM

Contrastanta i a la contrastanta i Contrastanta i a la contrastanta contrastanta i a la contrastanta i a la contrastanta i a la contrastanta i a contrastant

Low Power Design

Increasing Power Consumption

Large Scale and High Speed
Increasing amounts of embedded memory
Low Vth due to lower power supply voltages

⇒ increasing dynamic and leakage power

Types of Low Power Design Techniques

Various power reduction techniques exist, but they should be combined depending on the specification of the LSI

Low Power Design Tec	hnology	Main Power Component Which is Reduced			
		Dynamic Power	Leakage Power		
Low Voltage	Multi VDD	0	0		
	Power Control (DVFS)	0	0		
Switching Reduction	Gated Clock	0	×		
Leakage Reduction	Multi Vth	×	0		
	VTCMOS (Substrate control)	×	0		
	Power Gating	×	0		
	MTCMOS (Power gating)	×	0		
	Optimization of L	×	0		
Other	Low Power Synthesis/P&R	0	0		
	Pulsed latch	0	×		

The items in pink are areas which STARC has developed

What is DVFS?

DVFS (Dynamic Voltage Frequency Scaling) is a way of reducing power consumption by in a specific block by pre-defining a number of combinations of Voltage and Speed which can selected according to the processing requirements.

This functionality has to be embedded into the chip during the design stage.

Mode	Voltage (V)	Speed (MHz)	Perform ance	Power	VDD 1.0	(V)	[D	/FS Oper	ating co	ondition	Freq(MH	lz) 200
0	1.0	200	н	н	0.9				<u> </u>			. 100
1	0.9	100	М	М	0.8					\	/	50
2	0.8	50	L	L								
					Mode	0	1	2	1	2	0	
				Perforn	nance	L	М	í Lì	М	(L)	н	
				Pow	/er	L	М	5	М	15	н	

DVFS Implementation

ASP-DAC 2011

Multi power domain timing analysis

Inter power domain							r	
(IPD) coefficient	CPU-A	CPU-B	Multimedia Engine	Peripherals	System	Traditional	IPD	
mothod roducod		D) (50				Number of STA	Number of STA	
the number of	DVFS Mesh	Mesh	Frequency	Frequency	Frequency	domain)	domain)	
the number of	1.1±0.1	1.1±0.1	1.0±0.1	0.9 ± 0.05	1.0±0.1	9×8=72	6×1 =6	
combination for	1.1±0.1	1.0±0.1	1.0±0.1	0.9±0.05	1.0±0.1	9 × 8=72	6×1 =6	
power domains	1.1±0.1	0.9±0.05	1.0±0.1	0.9 ± 0.05	1.0±0.1	9 × 8=72	6×1 =6	
	1.0±0.1	1.1±0.1	1.0±0.1	0.9±0.05	1.0±0.1	9×8=72	6×1 =6	
$m \cdot c \cdot (2^n - 1) \to m \cdot c$	1.0±0.1	1.0±0.1	1.0±0.1	0.9±0.05	1.0±0.1	9×8=72	6×1 =6	
(Ex.)	1.0±0.1	0.9±0.05	1.0±0.1	0.9±0.05	1.0±0.1	9×8=72	6×1 =6	
Mode (m)=6,Corner (c)=9, 6,Power domain (n) =3 \longrightarrow STA 432 36								
An example for high-voltage min (hold check) analysis Inter power domain (IPD) coefficient								
CK C Capture								
			الالالالات	e				

Copyright (C) 2011 STARC All Rights Reserved.

Variation-aware Design and DFM

Variation and DFM Aware Design

Visible and Invisible Defects

DFM-aware Design Results

	Defect	Countermeasure	Design Index	Design Criteria	Result	
Random	Manufact -uring	Increase Wire Width, Increase Wire Spacing	Critical Area (CA)	Reduce critical area	Critical area	5.1% Improvement
	Via	Add double vias	Ratio of defective vias	Ratio of double vias > <u>80%</u>	Double via ratio	88.45%
Systematic	Litho hotspot	Litho Hotspot prevention → Analysis→ fix	Hotspot Error Count	Proportion of Criticality 1 hotspots fixed 100%	Percentage of critical hotspots fixed	100%

Litho hotspot correction example

Electrical DFM Design Flow

Variation Aware Design Technology

Signoff Corner Reduction Scenario (Corner Count $9 \Rightarrow 6 \Rightarrow 4$)

Signoff Corners: Combined number of verification conditions needed to guarantee design.

Sign Off Corners and Design Margin

Variation Aware Design Technology

Variation Tolerant Robust Clocks

6 sign-off corners

Integrated Variation Aware Design Flow

Contratation (Contratation) (Cont

Increasing Design Productivity

Relationship between Technologies and Results

Increase in TAT due to Scaling

Number and types of blocks included on chip increasing
Number of power and clock domains increasing
=> Floorplanning becomes more complex, number of iterations increase
Large scale, high speed, shrinking process nodes
=> Complexity of P&R, Sign off Verification, DFM get higher and TAT longer

Design Methodology for Increased Productivity

Integrated design flow

Copyright (C) 2011 STARC All Rights Reserved.

Summary

Increasing complexity and lengthening design times

- Large Scale, High Speed, smaller feature size increase need for low power, variability and manufacturability aware design and in response to that design times are lengthening.
- Make design easier means identifying and using best design practices
 - Low power design technologies
 - Manufacturing aware and variability aware design
 - \odot Move from invisible defects to visible defects
 - \odot Sign off corners and design margins
 - Reduce number of signoff corners
 - Improve design productivity

Develop and promote a good design methodology !

Thank you for your attention

Acknowledgments

This work was carried out as a part of the Next Generation Process Friendly Design Technology Development Project supported by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO).