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Illumination

IC Fabrication and Optical Lithography

Fundamental of IC fabrication: 
Optical Lithography
Lithography

Accounts for about 30% of 
manufacturing cost.
Tends to be the technical limiter 
for advance in feature size 
reduction.
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Reference: Chris Mack, Fundamental Principles of Optical Lithography: 
The Science of Microfabrication, John Wiley & Sons, 2007.



Sub-wavelength Lithography
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Courtesy of  Raghunath  Murali (http://www.mirc.gatech.edu/raghu/?p=185&cpage=1)



Resolution Enhancement Techniques
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Lithographic Hotspots

Lithographic hotspots cannot be completely eliminated.
Studies have shown that hotspots are largely pattern 
dependent.
Radius of influence becomes larger. Peripheral patterns can 
no longer be ignored.
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Physical Verification Tools

Design Rule Checking
One-dimensional geometrical rules are too simple and 
cannot describe two-dimensional patterns well
Checks become overly conservative or result in escaped 
hotspots

Model-Based Lithography Simulation
Generates accurate printed images and enables robust 
checking
Extremely computationally expensive
Requires well-calibrated process models
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Early Lithographic Hotspot Detection

Pattern Matching-Based Methods
Collect known bad patterns into database, and scan 
design for occurrences
Fast and efficient, but weak in recognizing previously 
unseen bad patterns
References: V. Dai, et al. (SPIE, 2007), H. Yao, et al. 
(IET-CDS, 2008), J. Ghan, et al. (SPIE, 2009).

Dual Graph-Based Method
Derive graphs from layout geometry to model cumulative 
effects from patterns in close proximity
Reference: A.B. Kahng, et al. (TCAD, 2008).
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Early Lithographic Hotspot Detection

Machine Learning-Based Methods 
Construct classification models from known good and 
bad patterns
Capable of making prediction on unseen patterns 
References: J.-Y. Wuu, et al. (SPIE, 2009), D. Ding, et al. 
(ICICDT, 2009), D. G. Drmanac, et al. (DAC, 2009).

We present a rapid two-level hotspot pattern 
classification flow, utilizing both central and 
peripheral pattern information. 

Detailed analysis of classification results is presented.   
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Supervised Machine Learning
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SVM maps the training data into a higher 
dimensional space where samples of different 
classes are separated by a hyperplane.

Support Vector Machine (SVM)
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Density-Based Feature Encoding
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Two-Level Lithographic Hotspot Pattern 
Classification Flow 
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Two-Level Lithographic Hotspot Pattern 
Classification Flow 
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Global Density Pre-Computation

Align pixel grids and save density computation time.
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Pattern Morphing

Symmetrical variants of a 
pattern may be equivalent in 
terms of printability.
Equivalent variants are 
created for each training 
sample.

Performed on feature vectors.
No modification on original 
design layout.
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Experimental Setup

Test Cases (Layer: Metal-1)

Hotspot locations verified using Mentor Graphics 
Calibre with real process models and RET recipes
LIBSVM used for classifier construction and pattern 
classification.

17



Experimental Results
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Level-1 vs. (Level-1 + Level-2) 
Classification
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Distribution of Classification Results
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Pattern Examples

Two layout patterns
Undistinguishable for Level-1 Classifier
Separated by Level-2 Classifier
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Effect of Global Density
Pre-Computation
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Effect of Pattern Morphing
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Runtime Information
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Sample
Location

Extraction

Global
Density

Database

Density 
Vector 

Synthesis
Prediction Total

L2Global 0.1 0.4 0.9 0.4 1.9
[1] 0.1 N/A 147.2 0.4 147.7

Lithography
Simulation N/A 251.1

[1] Jen-Yi Wuu, Fedor G. Pikus, Andres Torres, and Malgorzata Marek-Sadowska, “Detecting Context 
Sensitive Hotspots in Standard Cell Libraries,” Proc. SPIE, Vol. 7275, 727515, 2009.



False Positive Analysis

Analysis shows that most false positives are very 
close to hotspots.
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Conclusions

We presented a two-level lithographic hotspot 
pattern classification method, based on machine 
learning techniques.

We utilize density-based feature encoding.
Accuracy and runtime enhanced by global density pre-
computation and pattern morphing.
Fast and effective, suitable for early design stages.

Our method is verified on several 45nm and 32nm
real designs.
Analysis on classification results shows the false 
positives are very close to hotspots.
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