Rapid Layout Pattern Classification

Jen-Yi Wuu, Fedor G. Pikus, Andres Torres, Malgorzata Marek-Sadowska

Outline

- Introduction
- Supervised Machine Learning
- Two-Level Hotspot Pattern Classification
- Accuracy and Runtime Enhancement
- Experimental Results and Analysis

IC Fabrication and Optical Lithography

- Fundamental of IC fabrication:
 Optical Lithography
- Lithography
 - Accounts for about 30% of manufacturing cost.
 - Tends to be the technical limiter for advance in feature size reduction.

Reference: Chris Mack, *Fundamental Principles of Optical Lithography: The Science of Microfabrication,* John Wiley & Sons, 2007.

Sub-wavelength Lithography

Courtesy of Raghunath Murali (http://www.mirc.gatech.edu/raghu/?p=185&cpage=1)

Resolution Enhancement Techniques

Lithographic Hotspots

- Lithographic hotspots cannot be completely eliminated.
- Studies have shown that hotspots are largely pattern dependent.
- Radius of influence becomes larger. Peripheral patterns can no longer be ignored.

Central Pattern

Peripheral Pattern

Physical Verification Tools

Design Rule Checking

- One-dimensional geometrical rules are too simple and cannot describe two-dimensional patterns well
- Checks become overly conservative or result in escaped hotspots
- Model-Based Lithography Simulation
 - Generates accurate printed images and enables robust checking
 - Extremely computationally expensive
 - Requires well-calibrated process models

Early Lithographic Hotspot Detection

Pattern Matching-Based Methods

- Collect known bad patterns into database, and scan design for occurrences
- Fast and efficient, but weak in recognizing previously unseen bad patterns
- References: V. Dai, et al. (SPIE, 2007), H. Yao, et al. (IET-CDS, 2008), J. Ghan, et al. (SPIE, 2009).
- Dual Graph-Based Method
 - Derive graphs from layout geometry to model cumulative effects from patterns in close proximity
 - Reference: A.B. Kahng, et al. (TCAD, 2008).

Early Lithographic Hotspot Detection

Machine Learning-Based Methods

- Construct classification models from known good and bad patterns
- Capable of making prediction on unseen patterns
- References: J.-Y. Wuu, et al. (SPIE, 2009), D. Ding, et al. (ICICDT, 2009), D. G. Drmanac, et al. (DAC, 2009).
- We present a rapid two-level hotspot pattern classification flow, utilizing both central and peripheral pattern information.
 - Detailed analysis of classification results is presented.

Supervised Machine Learning

Support Vector Machine (SVM)

 SVM maps the training data into a higher dimensional space where samples of different classes are separated by a hyperplane.

Density-Based Feature Encoding

Two-Level Lithographic Hotspot Pattern Classification Flow

Two-Level Lithographic Hotspot Pattern Classification Flow

Global Density Pre-Computation

Align pixel grids and save density computation time.

Pattern Morphing

- Symmetrical variants of a pattern may be equivalent in terms of printability.
- Equivalent variants are created for each training sample.
 - Performed on feature vectors.
 - No modification on original design layout.

Experimental Setup

Test Cases (Layer: Metal-1)

Test Case	Tech Node	Dimension (mm x mm)	Hotspot Count	Min. Drawn Width/Spacing
T1	45nm	1.00 x 1.00	132	70nm
T2	45nm	0.39 x 0.39	34	70nm
Т3	32nm	0.45×0.45	45	50nm
Τ4	32nm	0.30 x 0.30	22	50nm

- Hotspot locations verified using Mentor Graphics Calibre with real process models and RET recipes
- LIBSVM used for classifier construction and pattern classification.

Experimental Results

	Pixel Size	Level-1 Classification					
		Clip Size	TP Count	TP Rate	FP Count	FP Rate	
T1	35nm	420nm	132	100%	4583	0.038%	
T2	35nm	420nm	33	97.1%	349	0.021%	
Т3	25nm	300nm	43	95.6%	327	0.034%	
T4	25nm	300nm	21	95.5%	162	0.038%	
Avg				97.1%		0.033%	

	Pixel	Level-1 + Level-2 Classification				
	Size	Clip Size	TP Count	TP Rate	FP Count	FP Rate
T1	35nm	700nm	103	78.0%	140	0.0012%
T2	35nm	700nm	29	85.3%	83	0.005%
Т3	25nm	600nm	38	84.4%	183	0.019%
T4	25nm	600nm	18	81.8%	121	0.029%
Avg				82.4%		0.014%

Level-1 vs. (Level-1 + Level-2) Classification

Distribution of Classification Results

Pattern Examples

Two layout patterns

- Undistinguishable for Level-1 Classifier
- Separated by Level-2 Classifier

Effect of Global Density Pre-Computation

Effect of Pattern Morphing

23

Runtime Information

	Sample Location Extraction	Global Density Database	Density Vector Synthesis	Prediction	Total
L2Global	0.1	0.4	0.9	0.4	1.9
[1]	0.1	N/A	147.2	0.4	147.7
Lithography Simulation		251.1			

[1] Jen-Yi Wuu, Fedor G. Pikus, Andres Torres, and Malgorzata Marek-Sadowska, "Detecting Context Sensitive Hotspots in Standard Cell Libraries," Proc. SPIE, Vol. 7275, 727515, 2009.

False Positive Analysis

 Analysis shows that most false positives are very close to hotspots.

Conclusions

- We presented a two-level lithographic hotspot pattern classification method, based on machine learning techniques.
 - We utilize density-based feature encoding.
 - Accuracy and runtime enhanced by global density precomputation and pattern morphing.
 - Fast and effective, suitable for early design stages.
- Our method is verified on several 45nm and 32nm real designs.
- Analysis on classification results shows the false positives are very close to hotspots.