Compression-Aware Capture Power Reduction for At-Speed Testing

Jia LI¹, Qiang XU², Dong XIANG¹

 School of Software, Tsinghua University, Beijing, CHINA
 Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, CHINA

Contents

1. Introduction

2. Background

3. Proposed Framework

4. Experimental Results

5. Conclusion

Test Power Problems

Test Power

Shift Power:

Duration: long Clock: scan Impact: thermal Solution: DFT-based

Capture Power:

Duration: short Clock: scan/functional Impact: yield Solution: Vector-based

Test Compression Becomes Mandatory

Test Compression Techniques

Nonlinear code-based

 Efficiently exploit the correlation among specific bits
 <u>No ATPG constraints</u>

Linear decompression-based

 High test compression ratio
 Integrated into ATPG Test compression techniques

Broadcast-based

- High test compression ratio
- Strict ATPG
 constraints

Approach: Utilize X-bits in test vectors

Impact of X-filling

Contents

1. Introduction

2. Background

3. Proposed Framework

4. Experimental Results

5. Conclusion

Code-based Test Data Compression

Fixed-symbol-length Schemes

- Test cubes segmented into fixed-length symbols
- Dictionary-based, Selective Encoding...

Variable-symbol-length Schemes

- Test cubes segmented into variable-length symbols
- Run-length-based, VIHC, …

Test Compression Ratio (TCR)

Related to <u>entropy*</u> of the test cubes to be encoded:

*The minimum average number of bits required for each code-word

 $H = -\sum_{i=1}^{n} p_i \times \log p_i$ $H \neq \mathbf{TCR} \neq$

 p_i : the probability of occurrence of symbol x_i in the test cubes

n: the total number of unique symbols

Improve TCR by X-filling

\bullet TCR $\uparrow \rightarrow$ H $\downarrow \rightarrow$ more skewed p_i distribution Fill X-bits to obtain:

- Fewer types of symbols
- log2 More code-words can be represented by symbols with higher p_i

Existing solution

- Fixed-symbol-length schemes: п Alternative Fill [Balakrishnan07]
- Variable-symbol-length schemes: still an open problem

2 symbol example:

0.5

H(x) \wedge

 $\mathbf{0}$

Capture Power in At-speed Testing

(a) LoC Scheme

Test Power Reduction with X-filling

***** Objective:

- Keep the capture power
- in at-speed scan testing
- under the safety limit

Approach:

- Selectively fill the X-bits
- in certain order
- to reduce Hamming distance between v_1 and v_2
- so that the capture transition in the entire CUT can be reduced under the safety limit

Problem Formulation

* X-filling can facilitate either test compression ratio enhancement or test power reduction, but not both.

- Different objectives and approaches
- →test sets with high TCR usually cause high capture power, or test sets with low capture power can not be compressed efficiently
- There is requirement to apply them simultaneously in at-speed testing
- Problem: Propose a compression-aware capture power reduction X-filling framework for at-speed scan testing

Contents

1. Introduction

2. Background

3. Proposed Framework

4. Experimental Results

5. Conclusion

Contributions highlight

Prior works:

- X-bits are usually selected and filled without considering their impact on test compression
- Considered only LoC at-speed testing
- Applicable to target special test compression scheme only

Proposed work:

- proposes to identify "X-candidate" that can be filled with low test compression ratio loss
- proposed "X-propagation" metric to evaluate the impact of the X-bits on capture power of both LoC and LoS at-speed testing.
- general applicability of the proposed framework in different X-filling and test compression strategies.

Overall flow

Test set with X-bits

Original test compression

Check for capture power safety

violation

"X-candidates" selection

Fill "X-candidates" with highest "X-propagation"

end

safe

"X-candidates" Selection (1)

In Fixed-symbol-length schemes

Vector1	111X	XX01	001X	X000	110X	011X
Vector2	X000	001X	X001	011X	01X0	X000
Vector3	X001	011X	011X	110X	110X	X000
Vector4	001X	X000	X000	01X0	110X	011X

Symbol set: {X000, 011X, 110X, 001X, X001, 01X0, 111X}

- X-bits in the representing symbols can be filled without affecting the distribution of the symbols
- X-bits in the corresponding code-words are selected as "X-candidates"

"X-candidates" Selection (2)

In Variable-symbol-length schemes

- Existing solutions fill the X-bits with logic value that will not break the run, e.g.,
- 000X0X0X 001X10X1→00000000 00101001
- Maximum run-length (L_{max}) : 8
- 4 code-words: 00000000, 001, 01, 001
- Or: 0000001, 001, 01, 001
- →the last bit in the code-word with the maximum run-length can be filled with 0 or 1.→chosen as "X-candidates"

Cause of capture power in at-speed scan testing: LoC/LoS scheme

"X-propagation" calculation

Contents

1. Introduction

2. Background

3. Proposed Framework

4. Experimental Results

5. Conclusion

Experimental setting

			LoC		LoS			
circuit	N_{sc}	N_v	Cov.%	X%	N_v	Cov.%	X%	
b20	544	851	98.74%	68.38%	783	97.80%	66.54%	
b21	544	760	98.55%	67.05%	683	97.43%	66.21%	
b22	789	844	98.81%	70.01%	811	97.91%	69.31%	
b17	1549	2180	99.19%	91.35%	3052	97.59%	92.73%	
b18	3027	1875	97.96%	93.09%	2759	93.03%	94.37%	
b19	5843	3888	97.71%	95.55%	6336	92.97%	96.86%	

Test compression schemes:

- Fixed-symbol-length scheme: dictionary-based [Wurtenberger04]
- Variable-symbol-length scheme: VIHC [Gonciari03]
- At-speed scan testing schemes:
 - LoC & LoS

[Wurtenberger04] A. Wurtenberger, C. S. Tautermann, and S. Hellebrand. Data Compression for Multiple Scan Chains using Dictionaries with Corrections. In *Proceedings IEEE International Test Conference (ITC)*, pages 926–935, October 2004. [Gonciari03] P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici. Variable-length input Huffman coding for system-on-a-chip test. *IEEE Transactions on Computer-Aided Design*, 22(6):783–796, June 2003.

In LoC at-speed testing

* For dictionary-based test compression

		Cor	npression Ra	tio		Capt				
circuit	Ideal	Ori. [18]	Pref. [8]	Adj. [7]	LPHC	Ori. [18]	Pref. [8]	Adj. [7]	LPHC	T(s)
b20	97.01%	91.96%	87.59%	89.06%	91.86%	2403(102)	2346(128)	2340(141)	2379(13)	40.5
b21	96.85%	91.86%	87.86%	88.97%	91.81%	2296(56)	2233(52)	2194(69)	2279(8)	17.9
b22	97.51%	90.52%	85.93%	87.46%	90.48%	3283(41)	3272(62)	3148(69)	3272(7)	9.2
b17	99.33%	93.96%	84.22%	89.25%	93.40%	3179(564)	2774(412)	2921(662)	3030(81)	4253.4
b18	99.28%	92.82%	81.26%	86.78%	92.81%	3631(46)	3465(28)	3347(72)	3618(3)	634.1
b19	99.63%	92.57%	78.81%	86.16%	92.56%	7408(71)	6269(26)	5920 (76)	7383(1)	7890.2

***** For VIHC

		Con	npression Ra	tio		Capt				
circuit	Ideal	Ori. [19]	Pref. [8]	Adj. [7]	LPHC	Ori. [19]	Pref. [8]	Adj. [7]	LPHC	T(s)
b20	63.54%	52.88%	13.20%	21.69%	52.37%	2195(50)	2346(128)	2340(141)	2185(17)	33.9
b21	60.89%	50.67%	14.67%	20.90%	50.47%	2003(23)	2233(52)	2194(69)	1999(9)	16.5
b22	63.41%	53.08%	15.77%	20.06%	52.96%	3028(41)	3272(62)	3148(69)	3025(7)	128.0
b17	85.95%	72.72%	21.63%	32.88%	72.14%	2173(110)	2774(412)	2921(662)	2170(75)	2355.3
b18	86.33%	72.06%	18.57%	23.14%	72.05%	1808(4)	3465(28)	3347(72)	1808(3)	514.2
b19	90.04%	74.72%	18.67%	23.58%	74.72%	3270(2)	6269(26)	5920(76)	3270(1)	2535.1

In LoS at-speed testing

* For dictionary-based test compression

		Con	npression Ra	tio		Captu				
circuit	Ideal	Ori. [18]	Pref. [8]	Adj. [7]	LPHC	Ori. [18]	Pref. [8]	Adj. [7]	LPHC	T(s)
b20	96.76%	91.70%	87.60%	88.91%	91.53%	2531(189)	2378(129)	2062(47)	2472(25)	54.4
b21	96.70%	91.76%	87.86%	89.10%	91.50%	2667(211)	2423(114)	2122(57)	2585(31)	75.4
b22	97.29%	90.49%	86.01%	87.56%	90.34%	4012(184)	3518(68)	3159(37)	3940(18)	113.6
b17	99.41%	94.70%	84.49%	90.44%	94.68%	4065(49)	2544(2)	1719(1)	4047(1)	162.1
b18	99.42%	93.38%	81.31%	87.33%	93.38%	7544(22)	4681(4)	2296(4)	7541(4)	374.2
b19	99.72%	93.56%	78.90%	87.14%	93.56%	15505(16)	8812(3)	3334(3)	15501(2)	1553.1

*** For VIHC**

		Con	npression Ra	tio		Capt				
circuit	Ideal	Ori. [19]	Pref. [8]	Adj. [7]	LPHC	Ori. [19]	Pref. [8]	Adj. [7]	LPHC	T(s)
b20	60.02%	49.98%	13.78%	22.34%	49.44%	1783(26)	2378(129)	2062(47)	1783(23)	19.8
b21	58.43%	48.57%	15.58%	21.67%	47.78%	1807(30)	2423(114)	2122(57)	1807(29)	26.6
b22	62.15%	51.74%	16.64%	21.53%	51.26%	2764(22)	3518(68)	3159(37)	2764(21)	44.3
b17	88.57%	74.67%	24.80%	42.17%	73.64%	1400(4)	2544(2)	1719(1)	1400(1)	179.3
b18	88.63%	74.08%	21.11%	26.59%	73.78%	1592(2)	4681(4)	2296(4)	1592(2)	331.3
b19	92.63%	76.56%	21.14%	27.08%	76.44%	2350(3)	8812(3)	3334(3)	2350(2)	1680.5

Contents

1. Introduction

2. Background

3. Proposed Framework

4. Experimental Results

5. Conclusion

At-speed scan-based testing

Utilizing X-bits for different test compression schemes

Conjunction: Compression-aware capture-power reduction X-filling framework

X-filling for capture power reduction

Thank You! Questions/Comments?