Secure Scan Design using Shift Register Equivalents against Differential Behavior Attack

Hideo Fujiwara**, Katsuya Fujiwara*, and Hideo Tamamoto*

Outline

- 1. Background and Motivation
- 2. Previous Works
- 3. Objective of the Study
- 4. Proposed Secure Scan Design
 - 4.1 SR-Equivalent Circuits
 - 4.2 How to Design/Control/Observe SR-Equivalent Circuits
 - 4.4 Application to Scan Design
- 5. Differential Behavior Attack
 - 5.1 Differential Behavior Equivalent
 - 5.2 Identification of Scan Structure
 - 5.3 Cardinality of Differential Behavior Equivalents
- 6. Conclusion

Background and Motivation

Contradiction between Testability and Security \rightarrow Solution?

Previous Works

- Recent works focus on secure scan design:
 - > D. Hely, et al. 2004, 2007 scrambling
 - > B. Yang, et al. 2004, 2006 MKR
 - > J. Lee, et al. 2006, 2007 lock & key
 - > S. Paul, et al. 2007 Vlm-scan
 - → G. Sengar, et al. 2007 flipped-scan-chain
 - U. Chandran, et al. 2009 –
- All approaches (*except Sengar*) add extra hardware outside of scan registers.

Which means:

- high area overhead
- timing overhead or performance degradation
- increased complexity of testing
- Imited security for the registers part

Objective of the Study

- Propose a secure scan design approach
 - Satisfies both testability and security
 - Replaces original scan registers with modified scan registers only

Which leads to:

- Little area overhead
- No performance overhead
- Introduce SR-equivalent scan circuits
 - How to design/control/observe SR-equivalents
 - How to apply it to scan design
- Consider scan-based differential-behavior attack
 - Propose SR-equivalent scan circuits with dummy FFs to protect differential-behavior attack
- Consider security level
 - Cardinality of d-behavior equivalents

k-stage SR-equivalent circuit, C

A circuit C with a single input x, a single output z, and k flip-flops is called *functionally equivalent* to a k-stage shift register (or *SR-equivalent*)

if the input value applied to x at any time t appears at z after k clock cycles, i.e., z(t+k) = x(t) for any time t.

Example: SR-equivalent circuit R_1

x	<i>y</i> 1	<i>y</i> ₂	<i>Y</i> ₃	z
(x(0))	<i>y</i> ₁ (0)	<i>y</i> ₂ (0)	<i>y</i> ₃ (0)	$z(0) = y_2(0) \oplus y_3(0)$
<i>x</i> (1)	<i>x</i> (0)	<i>y</i> _{<i>l</i>} (0)	$y_1(0) \oplus y_2(0)$	$z(1) = y_2(0)$
<i>x</i> (2)	<i>x</i> (1)	<i>x</i> (0)	$x(0) \oplus y_I(0)$	$z(2) = y_I(0)$
	<i>x</i> (2)	<i>x</i> (1)	$x(1) \oplus x(0)$	z(3) = (x(0))

How to Design SR-Equivalent Circuits 1/2

Given $I^2 L F^2 S R$

x	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃	Z.
(x(0))	y ₁ (0)	<i>y</i> ₂ (0)	<i>y</i> ₃ (0)	$z(0)=y_3(0)$
<i>x</i> (1)	<i>x</i> (0)	$1 \oplus y_I(0)$	$x(0) \oplus y_2(0)$	$z(1)=x(0)\oplus y_2(0)$
<i>x</i> (2)	<i>x</i> (1)	1⊕ <i>x</i> (0)	$x(1) \oplus 1 \oplus y_I(0)$	$z(2)=x(1)\oplus 1\oplus y_I(0)$
	<i>x</i> (2)	1⊕ <i>x</i> (1)	$x(2) \oplus 1 \oplus x(0)$	$z(3) = x(2) \oplus 1 = x(0)$

Symbolic simulation

Symbolic simulation

How to Control/Observe SR-Equivalents

k-stage shift register, SR

k-stage SR-equivalent circuit, C

To utilize the SR-equivalent circuit C as a shift register SR, we need to consider the following two problems.

State-Justification: (Scan-in)

To generate an input sequence to transfer the circuit C into a given desired state, independently of the initial state.

State-Observation: (Scan-out)

To identify the initial state by observing the output sequence from the state, independently of the input sequence.

How to Control SR-Equivalent Circuits, R₂

How to Observe SR-Equivalent Circuits, R₂

	x		y ₂	$y_3 \rightarrow z$	SR-equivalent I ² LF	⁻² SR, R ₂
	x	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃	Z.	
-	<i>x</i> (0)	<i>y_I</i> (0)	<i>y</i> ₂ (0)	<i>y</i> ₃ (0)	$\boxed{z(0)=1\oplus y_1(0)\oplus y_3(0)}$	
	<i>x</i> (1)	<i>x</i> (0)	$1 \oplus y_I(0)$	$x(0)^{\oplus}y_2(0)$	$z(1)=1\oplus y_2(0)$	
	<i>x</i> (2)	<i>x</i> (1)	1⊕ <i>x</i> (0)	$x(1) \oplus 1 \oplus y_l(0)$	$z(2)=y_{1}(0)$	
		<i>x</i> (2)	1⊕ <i>x</i> (1)	$x(2) \oplus 1 \oplus x(0)$	z(3) = x(0)	
		l			$v_{1}(0) = z(2)$	
Initial state $(y_1(0), y_2(0), y_3(0))$ is identified from output sequence $z(0), z(1), z(2)$ only,				$y_2(0) = 1 \oplus z(1)$		
INC	iepend	ienuy or	me input	sequence.	$y_3(0) = 1 \oplus z(0) \oplus z(2)$	13

Application to Scan Design 1/3

Replacement of scan chain by modified scan chain

Application to Scan Design 3/3

Scan design with SR-equivalent scan circuit

Differential Behavior (d-behavior)

- First, the circuit under test is reset and then run in normal mode.
- Next, it is switched to scan mode to scan out the contents of scan registers.
- These steps are repeated using another input sequence that is slightly different from the first input sequence.

Single-bit-change d-behavior for S₁

- d: differential value
- -: constant value

Differential-behavior Attack

The attack that inserts differential values into extended scan registers in normal mode and observes the differential behaviors in scan mode is called a *differential-behavior attack*.

Differential-behavior set

Extended scan circuit, S₁

Differential-behavior set (*d-behavior set*, for short) : The set of all d-behaviors for S₁

Fundamental differential-behavior set (*fundamental d-behavior set*, for short) : The set of all *single-bit-change* d-behaviors for S₁

Differential-behavior equivalent relation

Let S_1 and S_2 be extended scan circuits.

 S_1 and S_2 are said to be *differential-behavior equivalent* (or *d-behavior equivalent*, for short) if the d-behavior sets of S_1 and S_2 are the same. Example of d-behavior equivalence

 S_1 and S_2 are *d-behavior equivalent*.

- *d* : differential value
- : constant value

- 22 -

XOR-superposition of fundamental d-behaviors

Any differential behavior can be uniquely expressed by XOR-superposition of fundamental d-behaviors only.

23

Theorems

Theorem 1:

Any differential behavior can be uniquely expressed by XOR-superposition of fundamental d-behaviors only.

Theorem 2:

Let S_1 and S_2 be extended scan circuits. S_1 and S_2 are d-behavior equivalent if and only if fundamental d-behavior sets of S_1 and S_2 are the same.

Example of d-behavior equivalent relation

Fundamental d-behavior set of S_1 Fundamental d-behavior set of S_2^-

This circuit R_1 is an 3-stage SR-equivalent LF²SR.

$$\mathbf{x} \longrightarrow y_1 \longrightarrow y_2 \longrightarrow y_3 \longrightarrow \mathbf{z}$$

of 3-stage SR-equivalents = $2^{k!}/k! - 1 = 6,719$ # of 3-stage SR-equivalent LF²SR = $2^{k(k1-)/2} - 1 = 7$

$$\mathbf{x} \longrightarrow y_1 \longrightarrow y_2 \longrightarrow y_3 \longrightarrow \mathbf{z}$$

of 3-stage SR-equivalents = $2^{k!}/k! - 1 = 6,719$ # of 3-stage SR-equivalent LF²SR = $2^{k(k1-)/2} - 1 = 7$

Probability to identify the configuration = Reciprocal of the cardinality of SR-equivalents

For 3-stage SR-equivalents:1/6719For 3-stage SR-equivalent LF2SR:1/7

Extended shift register R₁

Extended scan circuit S₁

of 3-stage d-behavior equivalent $LF^2SR = 1$

- 30 -

of 3-stage d-behavior equivalent $LF^2SR = 1$

Probability to identify the configuration = Reciprocal of the cardinality of d-behavior equivalents

The probability that an attacker can identify the configuration of an extended scan circuit S approximates to the reciprocal of the cardinality of the class of extended scan circuits that are d-behavior equivalent to S.

To evaluate the security level against d-behavior attacks, we clarify the cardinality of each equivalent class.

Cardinality of d-behavior equivalent classes

(without dummy FF)

# of SR-Equivalent Scan Circuits	# of Equivalent Classes	Guaranteed Cardinality
$2^{\kappa} - 1$	1	$2^{\kappa} - 1$
$2^{k(k-1)/2} - 1$	$2^{k(k-1)/2} - 1$	1
r(r 1)/2 $r(r r)$	$- \frac{1}{2}(\frac{1}{2})/2$	
$(2^{\kappa(\kappa-1)/2}-1)(2^{\kappa}-1)$	$2^{\kappa(\kappa-1)/2} - 1$	$2^{\kappa} - 1$
	# of SR-Equivalent Scan Circuits $2^{k} - 1$ $2^{k(k-1)/2} - 1$ $(2^{k(k-1)/2} - 1)(2^{k} - 1)$	# of SR-Equivalent # of Equivalent Scan Circuits Classes $2^{k} - 1$ 1 $2^{k(k-1)/2} - 1$ $2^{k(k-1)/2} - 1$ $(2^{k(k-1)/2} - 1)(2^{k} - 1)$ $2^{k(k-1)/2} - 1$

Two classes of LF²SR and LFSR are not secure because their guaranteed cardinality is 1.

However, all other classes are secure.

SR-equivalent scan circuits with dummy FF

SR-equivalent scan circuits with dummy FF

	J	(with dummy F	F) $O(k^2)$
	# of SR-Equivalent Scan Circuits	# of Equivalent Classes	Guarantee Cardinalit
I^2SR	$(3k^2+k)(2^k-1)/2$	k(k+1)/2	$3(2^{k}-1)$
LF ² SR (LFSR)	$(3k^2+k)(2^{k(k-1)/2}-1)/2$	$(2^{(k-1)(k-2)/2})(2^k-1)$	$O(k^2)$
$I^{2}LF^{2}SR$ ($I^{2}LFSR$)	$(3k^2+k)(2^{k(k-1)/2}-1)(2^k - 1)/2$	$(2^{(k-1)(k-2)/2})(2^k-1)$	$O(k^2 2^k)$

Cardinality of d-behavior equivalent classes

All classes with dummy FF are secure.

Especially the classes of I²LF²SR and I²LFSR with dummy FF are the most secure thanks to high cardinality.

Enumeration Results by SREEP-2

To examine the actual cardinalities of d-equivalent classes for each type of extended scan circuits, we made a program called *SREEP-2* (*Shift Register Equivalents Enumeration and Synthesis Program -2*).

The enumeration results for extended scan circuits without and with dummy FF are shown in the following slides.

Cardinality of d-behavior equivalent classes

(without dummy FF) by SREEP-2

	#	# of	# of	Guaranteed	Range of
	FFs	Scan	Equivalent	Cardinality	Cardinality
		Circuits	Classes		
I^2SR	k=3	7	1	7	7~7
	k=4	15	1	15	15~15
	k=5	31	1	31	31~31
LF^2SR	k=3	7	7	1	1~1
(LFSR)	k=4	63	63	1	1~1
	k=5	1023	1023	1	1~1
I ² LF ² SR	k=3	49	7	7 ,	7~7
$(I^2 LFSR)$	k=4	945	63	15 /	15~15
	k=5	31713	1023	31	31~31
				1	

/ Not Secure

Cardinality of d-behavior equivalent classes

(with dummy FF) by SREEP-2

	#	# of Scan	# of	Guaranteed	Range of
	FFs	Circuits	Equivalent	Cardinality	Cardinality
			Classes		
I ² SR	k=3	105	6	17	14~21
	k=4	390	10	39	30~45
	k=5	1240	15	82	62~93
LF ² SR	k=3	105	14	7	5~10
(LFSR)	k=4	1638	120	13	8~20
	k=5	40920	1984	20	11~40
I ² LF ² SR	k=3	735	14	52	35~70
$(I^2 LFSR)$	k=4	24570	120	204	120~300
	k=5	1268520	1984	639	341~1240
Increased thanks to dummy FF Most secure 38					38

Conclusions

- Considered a scan-based differential-behavior attack and proposed several classes of SR-equivalent scan circuits using dummy flip-flops in order to protect the scan-based differential-behavior attack.
- Introduced differential-behavior equivalent relation, and clarified the cardinality of differential-behavior equivalent classes.
- The proposed extended scan design is very secure as well as easily testable, the normal delay or performance overhead is zero, and the area overhead can be very low.

Thank you

