An Efficient Algorithm of Adjustable Delay Buffer Insertion for Clock Skew Minimization in Multiple Dynamic Supply Voltage Designs

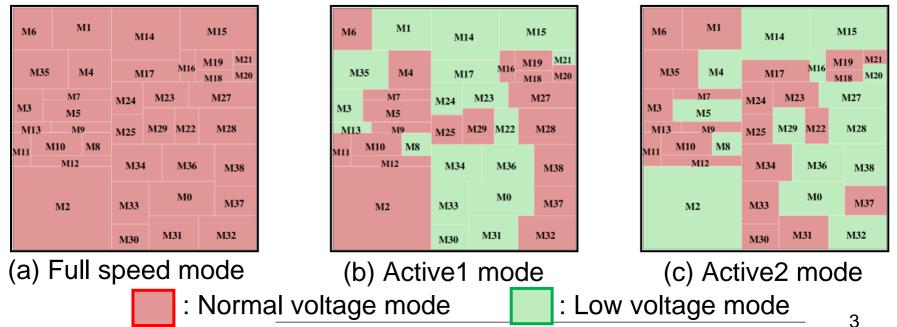
Asia and South Pacific Design Automation Conference

Authors: Kuan-Yu Lin, Hong-Ting Lin, and Tsung-Yi Ho Presenter: Hong-Ting Lin

chibli@csie.ncku.edu.tw http://eda.csie.ncku.edu.tw Electronic Design Automation Laboratory Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan

NCKU CSIE EDALAB

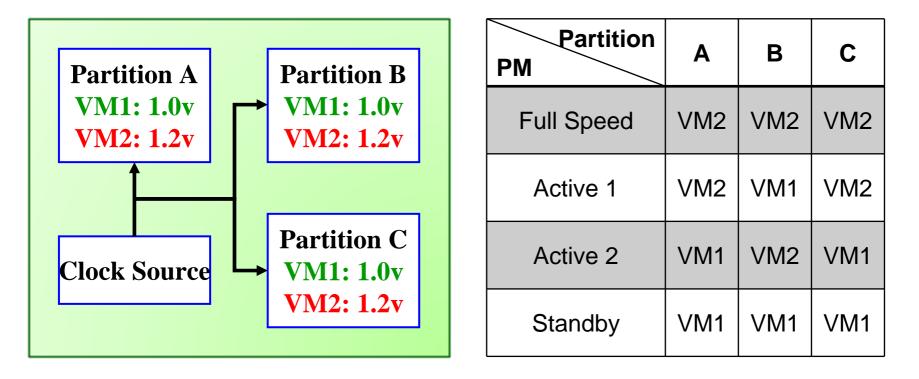
Introduction


- Multiple Dynamic Supply Voltage (MDSV) Designs
- The Clock Skew Issue in MDSV Designs
- A Model of Adjustable Delay Buffer
- . Problem Formulation
- . Algorithm Flow
- . Clock Skew Minimization in MDSV Designs
- . Experimental Results
- . Conclusions

Introduction

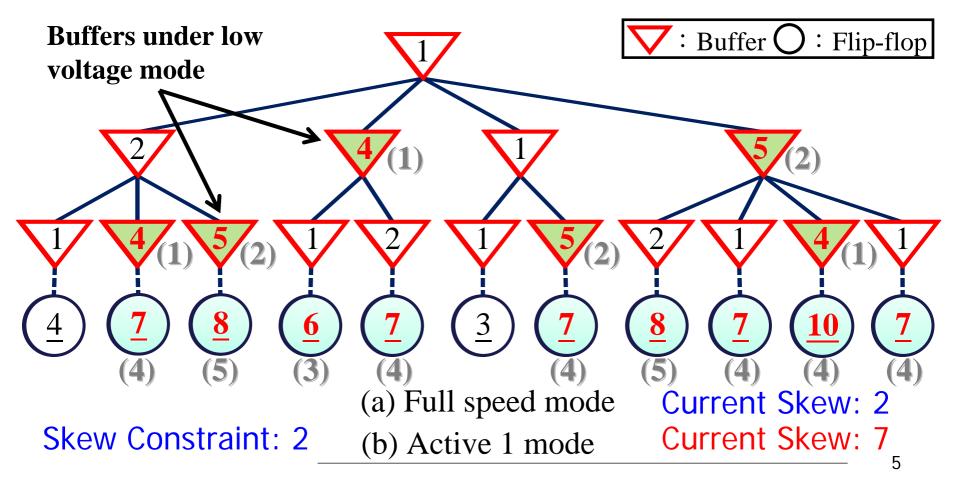
- Multiple supply voltage designs
 - Pros: Reduce partial power consumption
 - Cons: Degrade the performance

.


- Multiple dynamic supply voltage designs
 - Pros: Reduce power consumption while keeps the performance
 - Cons: Lead to the variability issue in the clock tree

Multiple Dynamic Supply Voltage (MDSV) Designs

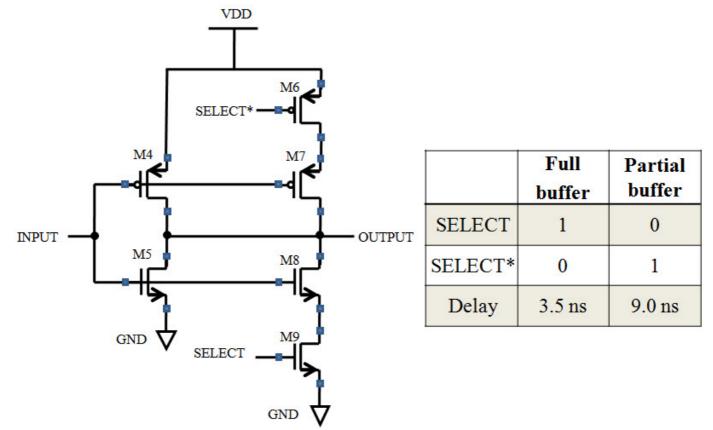
Power mode concept


The power optimal scheme of voltage mode operation on each voltage island

The Clock Skew Issue in MDSV Designs

The variability of clock skew

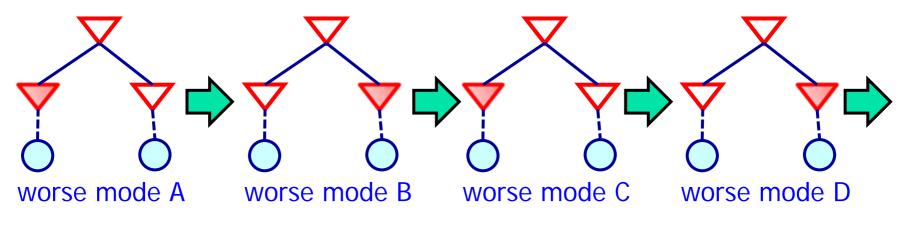
In MDSV designs, the clock skew may violate the skew constraint during the switching between different power modes



A Model of Adjustable Delay Buffer

Adjustable Delay Buffer (ADB) [5]

.


- Parallel two inverters and add the SELECT pins to control the driving modes
- ADB are used to produce additional delays during transportation

[5] G. N. Roberts, "Adjustable buffer driver," U. S. Patent, no. 5361003, 1994.6

Previous Work

- Su et al. [6] proposed the algorithm to reduce the clock skew by adopting ADBs
- In single power mode:
 - Random insert ADBs and iteratively improve the results by adding one ADB and removing another ADB
- In multiple power modes

[6] Y. S. Su et al., "Value assignment of adjustable delay buffers for clock skew minimization in multi-voltage mode designs," ICCAD, pp. 535-538, 2009.

7

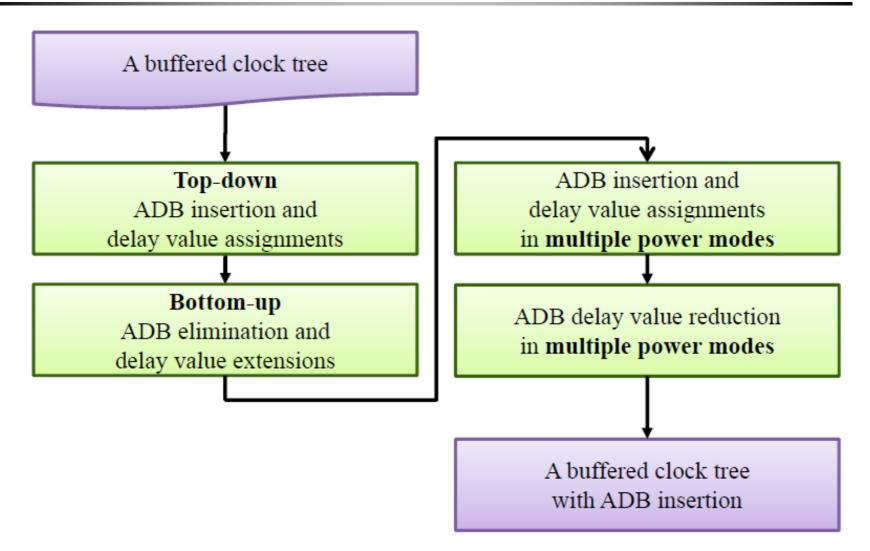
- . Introduction
- . Problem Formulation
- . Algorithm Flow
- . Clock Skew Minimization in MDSV Designs
- . Experimental Results
- . Conclusions

Problem Formulation

Input

 Given an MDSV design with a buffered clock tree and the skew constraint, and given locations of voltage islands and power mode assignments in the design

Objective


 Insert ADBs with delay value assignments to minimize the clock tree skew in the MDSV design

Timing model

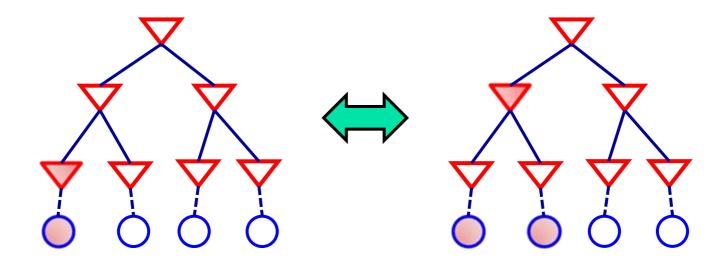
 The timing information refers to the Synopsys industry cell library, and the values of clock latency refer to the summation of total buffer delay in every branch of the clock tree

- . Introduction
- . Problem Formulation
- . Algorithm Flow
- . Clock Skew Minimization in MDSV Designs
- . Experimental Results
- . Conclusions

Algorithm Flow

- . Introduction
- . Problem Formulation
- . Algorithm Flow
 - **Clock Skew Minimization in MDSV Designs**
 - Top-Down ADB Insertion and Delay Value Assignments
 - Bottom-Up ADB Elimination and Delay Value Extensions
 - ADB Insertion with Delay Value Assignments in Multiple Power Modes
 - ADB Delay Value Reduction in Multiple Power Modes
- . Experimental Results
- . Conclusions

Clock Skew Minimization in MDSV Designs

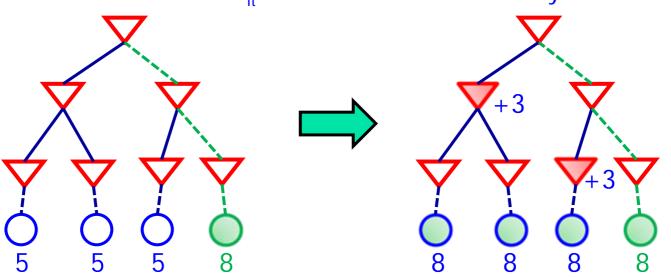

Clock skew reduction in single power mode

- An efficient two-stage algorithm for ADB insertion
- Clock skew reduction in multiple power modes
 - Results combination of every single power mode by union method
- ADB delay value reduction
 - To reduce further delay values in an ADB

Top-Down ADB Insertion and Delay Value Assignments

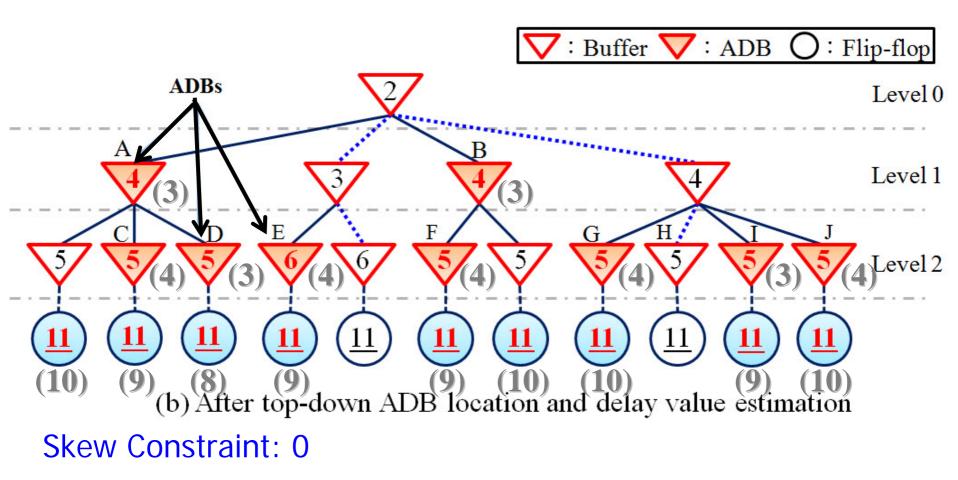
The top-down strategy

 Since inserting ADBs in higher tree levels can affect larger parts of the clock tree, the top-down strategy can provide high priority for inserting ADBs in the higher level of the clock tree


Top-Down ADB Insertion and Delay Value Assignments

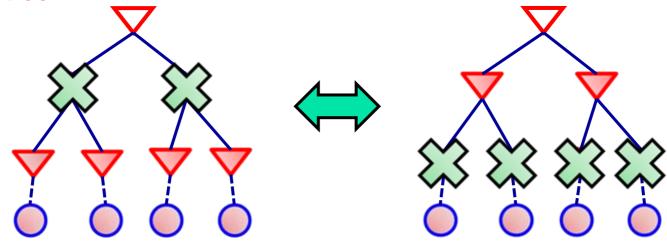
Optimal delay value assignment

 Referring to [6], the algorithm aligns the local clock tree with less clock latency to the global clock tree with maximum clock latency


ADB_d: the additional delay value assigned on ADB

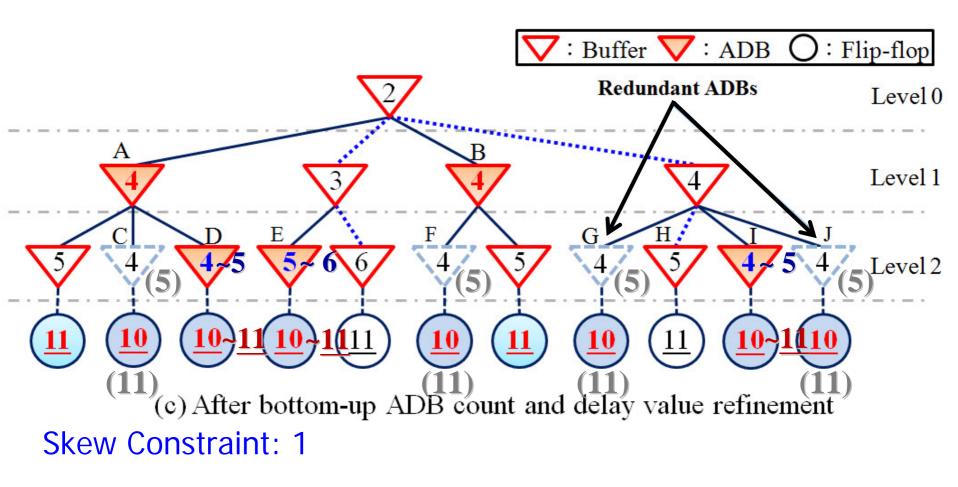
 $ADB_d = L_{gt} - L_{lt}$ L_{gt}: the maximum clock latency of global clock tree L_{lt}: the maximum clock latency of local clock tree

[6] Y. S. Su et al., "Value assignment of adjustable delay buffers for clock skew minimization in multi-voltage mode designs," ICCAD, pp. 535-538, 2009.

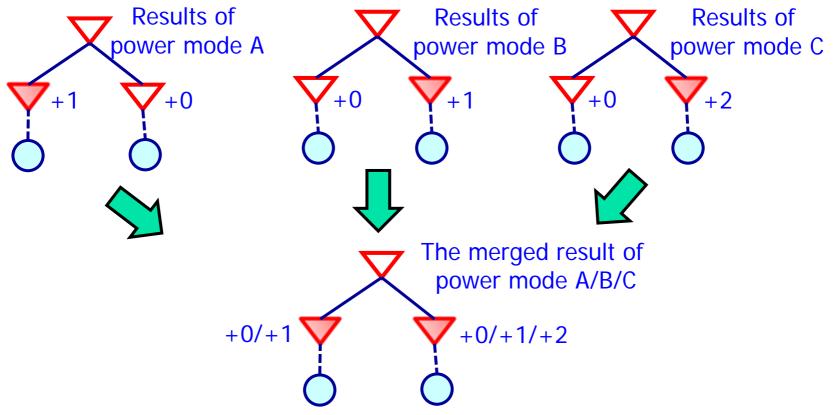

Top-Down ADB Insertion and Delay Value Assignments

Bottom-Up ADB Elimination and Delay Value Extensions

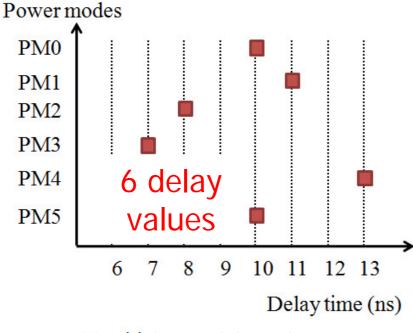
The bottom-up strategy


 Because upper level of ADBs can affect and improve the skew problem to larger parts of the clock tree. In this step, we focus on eliminating the ADBs which drive the smaller local clock tree.

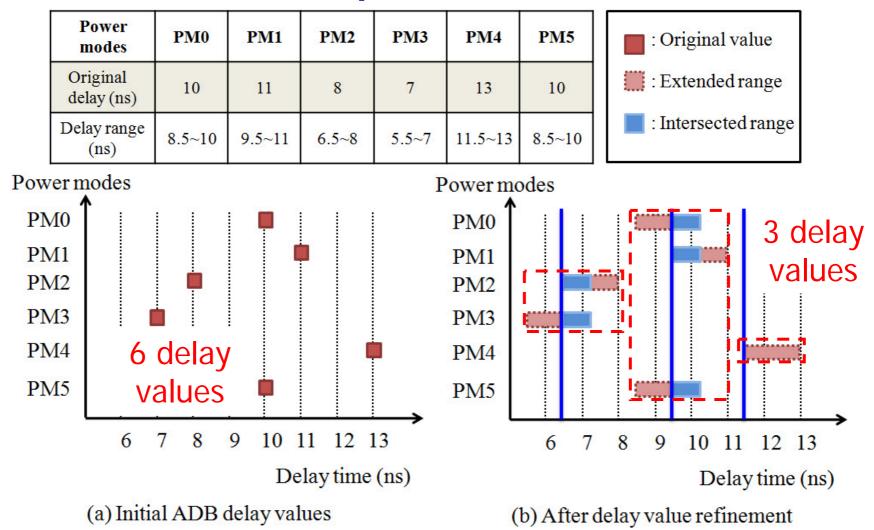
The advantage of the extended delay range


Whatever delay values are assigned in the delay range, the assignments still can meet the skew constraint

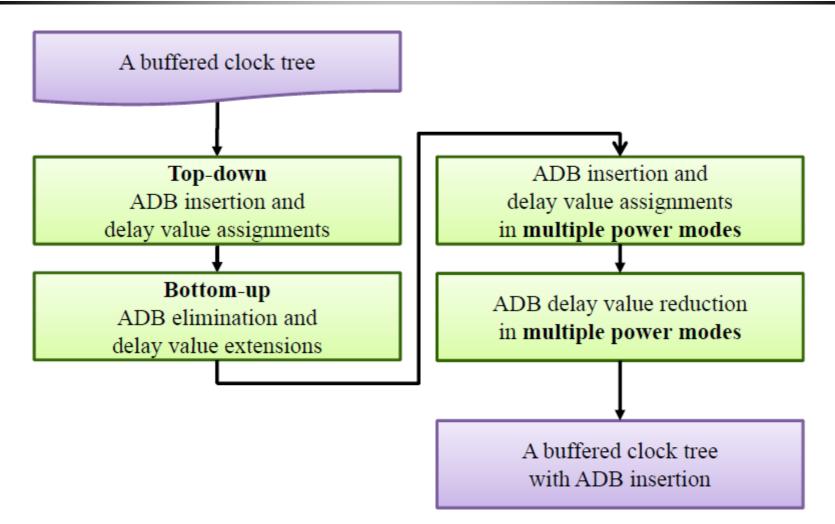
Bottom-Up ADB Elimination and Delay Value Extensions


ADB Insertion with Delay Value Assignments in Multiple Power Modes

- The union method
 - Apply the two-stage algorithm in every power mode and confirm the skew constraint is not violated in all power modes The results of clock trees can be merged by the union method


ADB Delay Value Reduction in Multiple Power Modes

- The application of extended delay ranges
 - By searching the intersections of extended delay ranges, the algorithm can merge the delay values which share the same intersection.



⁽a) Initial ADB delay values

ADB Delay Value Reduction in Multiple Power Modes

Algorithm Flow Recap

- . Introduction
- . Problem Formulation
- . Algorithm Flow
- . Clock Skew Minimization in Designs
- **Experimental Results**
 - Experimental Results
 - The Layout Result
 - Conclusions

Experimental Results

Benchmarks	# Flip- flops	# Buffers	Skew Constraint (ps)	Worst Clock Skew (ps)			Average Clock Skew (ps)			Worst Clock Latency (ps)		
				Original	[6]	Ours	Original	[6]	Ours	Original	[6]	Ours
design1.def	384	22	200	476	200	200				316	1316	1316
design1.def	384	33	300	476	293	300		out skew	violatic	DN 316	1316	1316
design2.def	992	79	200	463	200	200	388	197	198	1560	1560	1560
		19	300	463	300	300	388	272	292	1560	1560	1560
design3.def	1536	127	200	630	200	200	506	195	200	1667	1667	1667
designo.dei	1550	127	300	630	298	300	506	290	300	1667	1667	1667
design4.def	3360	337	200	1018	199	200	785	196	200	2888	2888	2888
design4.def	5500	557	300	1018	299	300	785	292	300	2888	2888	2888
design5.def	6144	519	200	1167	198	200	796	196	200	3069	3069	3069
design5.def	5144	519	300	11	-	000/ 0			1001	6	17 0 11	. – – – – – – – – – – – – – – – – – – –
				0%	% 10 25.	83% 01	_ /.59	% to 42	4U% C	NT _ T	17.84X (OT
Benchmarks	# Flip- flops	# Buffers	Skew Constraint	# .	ADB rec	duction	# Tr	ansistor	reducti	ion ru	untime s	speedup
			(ps)	[6]	Ours	Improvement (%)	[6]	Ours	Improvement (%)	[6]	Ours	[6] / Ours
decient def	384	33	200	19	19	0.00%	336	260	22.62%	0.01	< 0.01	> 1.00
design1.def	384	22	300	8	7	12.50%	216	168	22.22%	< 0.01	< 0.01	1.00
decise 2.1.0	002	70	200	61	61	0.00%	896	828	7.59%	0.17	0.01	17.00
design2.def	992	79	300	18	17	5.55%	644	516	19.88%	0.09	0.01	9.00
1	1000	107	200	100	100	0.00%	2192	1724	21.35%	1.05	0.04	26.25
design3.def	1536	127	300	37	32	13.51%	1764	1016	42.40%	0.55	0.03	18.33
			200	199	196	1.51%	5172	4156	19.64%	12.84	0.13	98.77
design4.def	3360	337 -	300	113	99	12.38%	4688	2980	36.43%	10.03	0.14	71.64
			200	289	286	1.04%	7680	6112	20.42%	50.67	0.43	117.84
design5.def	6144	519	h	۹	+	┼───╉	<u>+</u>	<u>`</u>	┼────╊	┼────╂	<u> </u>	+

[6] Y. S. Su et al., "Value assignment of adjustable delay buffers for clock skew minimization in multi-voltage mode designs," ICCAD, pp. 535-538, 2009. —

25.83%

6756

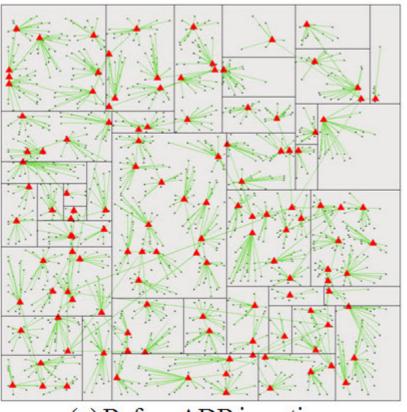
3996

40.85%

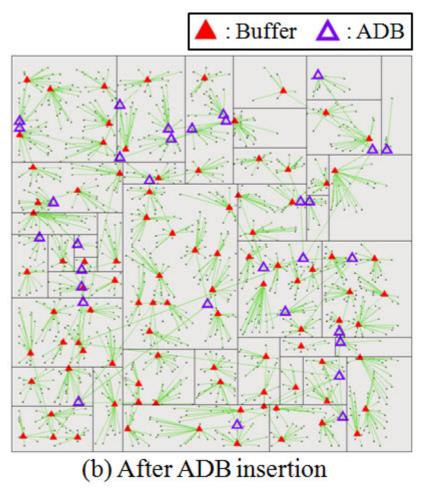
35.50

89

300


120

82.56


0.43

Experimental Results

. Layout result of design3.def

(a) Before ADB insertion

- . Introduction
- . Problem Formulation
- . Algorithm Flow
- . Clock Skew Minimization in MDSV Designs
- . Experimental Results
- Conclusions

Conclusions

Novel techniques are proposed to reduce the clock skew in MDSV designs

The proposed algorithms of delay value reduction can reduce the area overhead of ADBs in MDSV designs

Experimental results show that our algorithms are effective and efficient on clock skew, area, and runtime results in MDSV designs

