An Integer Programming Placement Approach to FPGA Clock Power Reduction

Alireza Rakhshanfar and Jason Anderson Dept. of Electrical and Computer Engineering University of Toronto

> IEEE/ACM ASP-DAC Yokohama, Japan

> > January 2011

Mobile Devices

Motivation

- FPGA dynamic power is 7-14x higher than ASICs [Kuon TCAD'07].
 - Long metal wire segments.
 - Overhead of programmability.
- Power consumption excludes them from lowpower applications such as mobile devices.
- Significant reductions are needed to close gap with ASICs.

FPGA Power Consumption

- Dynamic power is a function of toggle rates and capacitances of signals.
- Clock power is a major source of power dissipation due to their high fan-out and toggle frequency.
 - Accounts for 20-39% of dynamic power consumption [Degalahal ASP-DAC'05].
- This work: CAD technique to reduce FPGA clock power.

FPGA Clock Network

Related Work

• Prior work at Actel Corp. [HSU IET-CDT'10] has used this technique in annealing-based

placement framework.

- Annealing works with any cost function.

- However, many placement algorithms use analytical techniques.
- Our technique is a post-placement task:

- Can be incorporated in any placement algorithm.

Integer Linear Programming

- Formal optimization technique with broad applications.
- Linear objective function.
- Linear equality and inequality constraints.
- NP-hard to solve.
- ILP Solver: lp_solve.

Binary Variables: clkA_1, clkA_2 clkB_1, clkB_2

clkA_1 is true if clock A is used in the first column

Binary Variables: clkA_1, clkA_2 clkB_1, clkB_2

> blkM_11, blkM_12, blkM_21, blkM_22 blkN_11, blkN_12, blkN_21, blkN_22

blkM_11 is true if block M is placed in location 1,1

Binary Variables:

: clkA_1,clkA_2,clkB_1,clkB_2 blkM_11, blkM_12, blkM_21, blkM_22 blkN_11, blkN_12, blkN_21, blkN_22

Objective Function: min_clkA_1 + clkA_2 + clkB_1 + clkB_2

Block N: Clock B

Binary Variables: clkA_1,clkA_2,clkB_1,clkB_2 blkM_11, blkM_12, blkM_21, blkM_22 blkN_11, blkN_12, blkN_21, blkN_22

Objective Function: min clkA_1+clkA_2+clkB_1+clkB_2

Placement:

blk/1/11+10+16/14.01_2+16-16/16/14.022+16-16/14/0222+1

15

Binary Variables: $clkA_1, clkA_2, clkB_1, clkB_2$ $blkM_11, blkM_12, blkM_21, blkM_22$ $blkN_11, blkN_12, blkN_21, blkN_22$ Objective Function: min $clkA_1+clkA_2+clkB_1+clkB_2$ Placement: $blkM_11+blkM_12+blkM_21+blkM_21=1$ $blkN_11+blkN_11+blkN_21+blkN_21=1$ **Exclusivity:** $blkM_11+blkN_11+blkN_11\leq 1$ $blkM_12+blkN_12\leq 1$ $blkM_12+blkN_12\leq 1$

blkM 22+blkN 22≤1

Block N: Clock B

Binary Variables: clkA_1,clkA_2,clkB_1,clkB_2 blkM_11, blkM_12, blkM_21, blkM_22 blkN_11, blkN_12, blkN_21, blkN_22 Objective Function: min clkA_1+clkA_2+clkB_1+clkB_2

Placement: blkM_11+blkM_12+blkM_21+blkM_21=1 blkN_11+blkN_11+blkN_21+blkN_21=1

Exclusivity:

Block M: Clock A Block N: Clock B Spine Count:

T: large constant

blkM_11+blkM_12 ≤ T*clkA_1

blkM_11+blkN_11≤1 blkM 12+blkN 12≤1

blkM_21+blkN_21≤1 blk M22+blkN 22≤1

 $blkM_21+blkM_22 \leq T^*clkA_2$ $blkN_11+blkN_12 \leq T^*clkB_1$ $blkN_21+blkN_22 \leq T^*clkB_2$

Block N: Clock B

- Multiple solutions to an ILP problem.
- Original placement is optimized for wirelength and timing
- Anchoring term: encourages blocks to remain in their original position.

Original Objective Function: min clkA_1+clkA_2+clkB_1+clkB_2

Augmented Objective Function: min clkA_1+clkA_2+clkB_1+clkB_2 + 0.1*(blkM_12+blkM_21+blkM_22 +blkN_11+blkN_12+blkN_21) 18

Managing Runtime

Permissible Move Distance

Methodology

Power, wirelength, timing

Measurement Metrics

- Clock signals are routed from horizontal spines to vertical half-spines on an as-needed basis.
- Clock signals usually span many columns and require many vertical half-spines.
- Clock network capacitance mainly determined by the # of vertical half-spines used.
- Our metrics: number of vertical half-spines (spine count), wirelength, timing

Comparative Baseline

- Aims to reduce spine count in an annealingbased placer (Actel Corp.) [Hsu IET-CDT'10].
- Cost function:
 Cost= a•WireLength + b•Timing + c•ClockPowerCost
- ClockPowerCost = sum of spine costs
- Spine cost:
 - when no logic blocks use a spine, spine cost=0.
 - when blocks are initially added to a spine, spine cost ramps quickly.
 - when spine is ½ full, spine cost increases slowly up to a maximum when the spine is full.

Experimental Methodology

- FPGA architecture: 10 4-LUT/flip-flop pairs per logic block and length-4 wire segments.
- Altered 20 combinational and sequential benchmark circuits to contain multiple clock signals.
- For each circuit, the logic blocks were arbitrarily assigned one of the four clock domains.

Spine Count Reduction

Post Routing Wirelength Increase

Annealing Based Approach

Cost= a•WireLength + b•Timing + c•ClockPowerCost

27

Comparison

Optimization Approach	Spine Reduction	Wirelength Increase
Our approach- Permissible move distance 2	52-54%	6-7%
Our approach- Permissible move distance 3	58-61%	10-11%
Annealing-based [Hsu IET-CDT'10]	60%	3-4%

Projected Power Benefit

	% Total Dynamic Power	% Reduction	Projected power reduction
Clock power	25%	50%	12.5%
Logic-signal power	50%	-6%	-3%
Overall			~9%

Conclusions

- Post-placement ILP based clock power optimization technique.
- Can be used in conjunction with placement algorithm.
- Over 50% reduction of clock spine resources with minimal damage to traditional placement metrics.

Future Work

 Evaluate proposed ILP-based technique within comprehensive power-aware FPGA CAD system that optimizes power throughout flow, including synthesis, packing, place and route.

Questions

	Baseline VPR		VPR+ clock power optimization	
Benchmark	Clk Spine Count	# Wire Segs	Clk Spine Count	# Wire Segs
alu4	73	8148	34	8664
apex2	92	13021	39	13758
apex4	74	9740	32	10410
bigkey	66	13870	32	14306
clma	217	64527	109	68509
des	78	17913	42	18927
diffeq	65	5578	31	6340
dsip	67	13056	30	13733
elliptic	113	18857	46	20433
ex1010	154	36901	71	39430
ex5-p	60	9404	27	10185
frisc	118	22549	48	24023
misex3	73	8537	34	8848
pdc	164	42780	70	44606
s298	97	7716	45	8123
s38417	93	26605	88	29296
s38584.1	119	30842	92	33685
seq	86	11830	40	12884
spla	147	28673	65	30117
tseng	49	4981	22	5599
Geomean	99.0	15563.9	45.1	16660.7

Window size 4, move distance 2