Row-Based Area-Array I/O Design Planning in Concurrent Chip-Package Design Flow

Ren-Jie Lee, *Hung-Ming Chen (EE Dept., National Chiao Tung Univ., Taiwan)

Outline

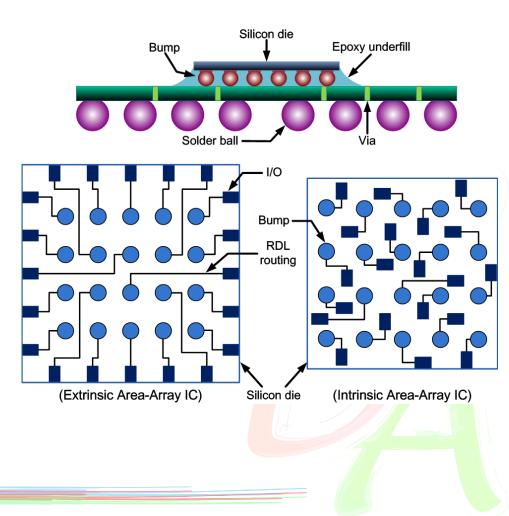
Introduction

Novel I/O-bump tile design and I/O-row based planning

Package-aware I/O-bump planning methods

Experimental results

Previous Work


Wire-bonding package

Peripheral I/O-pad

Flip-chip package

Area-array I/O-bump

- ✓ Extrinsic area-array I/O
 - network-flow-based [5]
 - ILP-based [6]
- ✓ Intrinsic area-array I/O
 - I/O clustering method [7]
 - constraint-driven I/O planning [8]

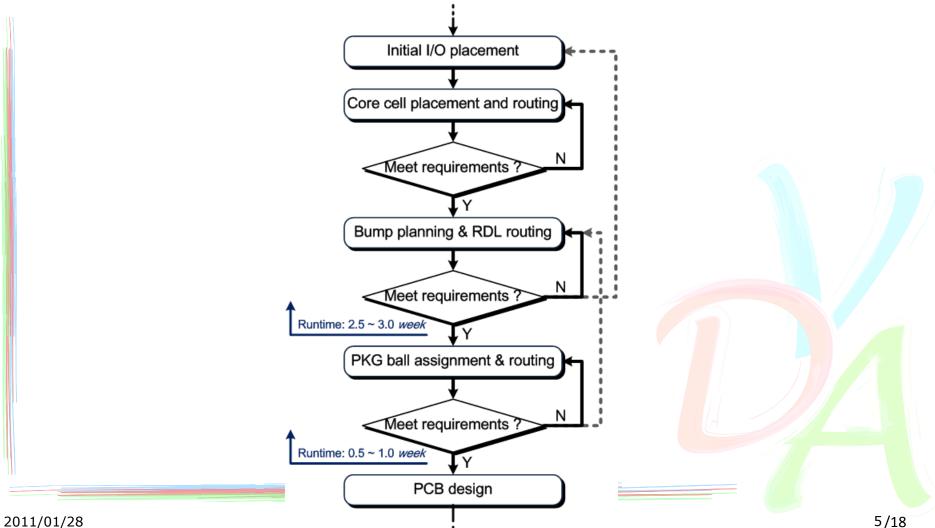
Motivation

Issues in previous works

Bumps are assumed to be arranged in fixed array location

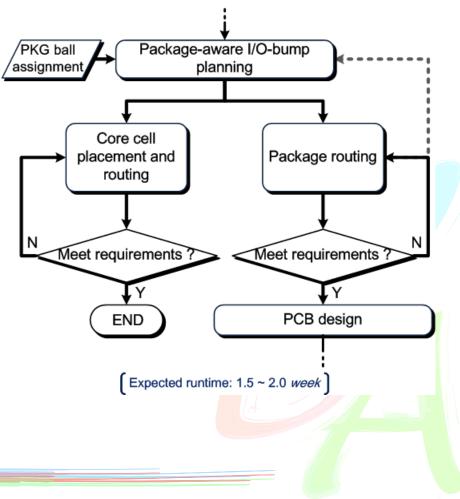
- ✓ Flexibility in optimizing chip and package designs is restricted
- ✓ Costly RDL routing or I/O planning is needed

Pin-out (ballplan) is ignored

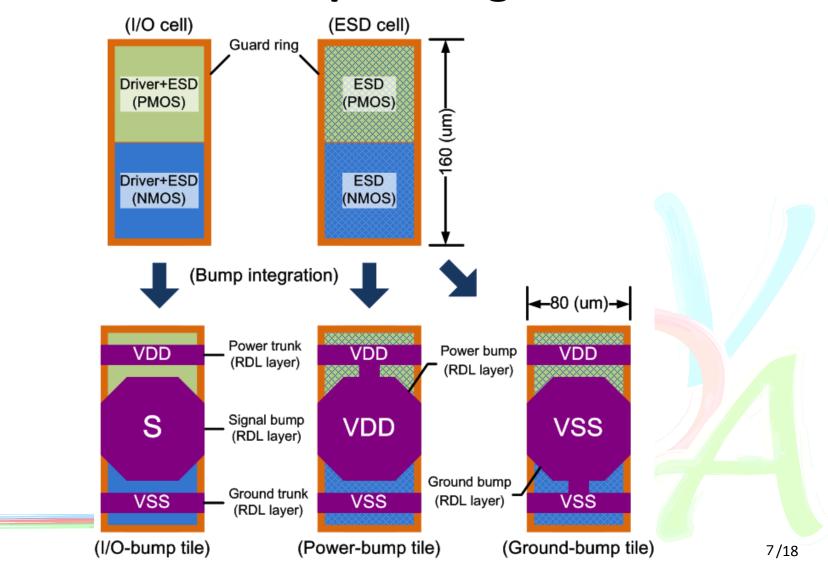

✓ It possibly leads to complicated or failed package design

The conventional design flow is a sequential flow

 It will result in long and costly re-spin cycles on satisfying the entire system's design constraints (see next slide)

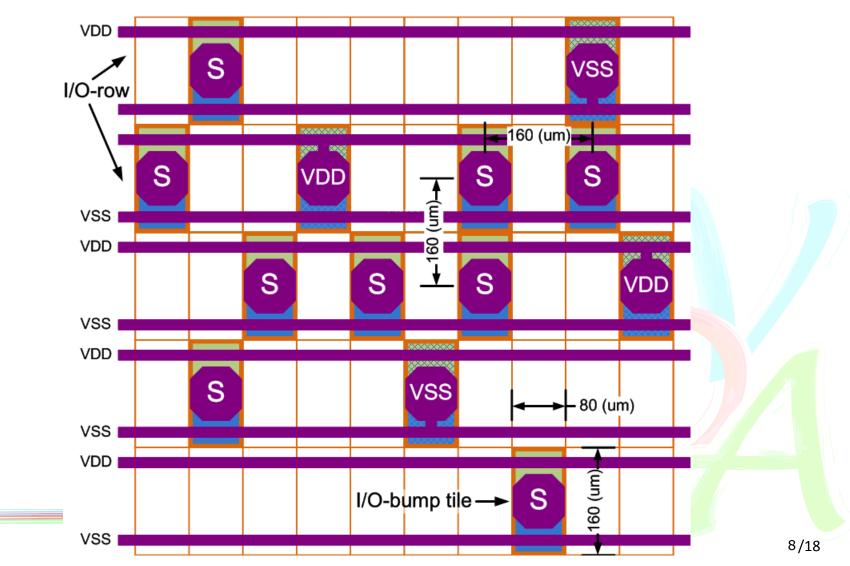

Motivation (cont.)

Conventional chip-package design flow (IC-driven)



Our Contributions

- We propose a concurrent design flow
- We design the specific I/Obump tiles with I/O-row based scheme
- We develop two heuristics and one optimization algorithm to place I/O-bump



Novel I/O-bump tile design and I/O-row based planning

2011/01/28

Novel I/O-bump tile design and I/O-row based planning (cont.)

2011/01/28

Problem Description

Input:

—The given net names and locations for n package balls.

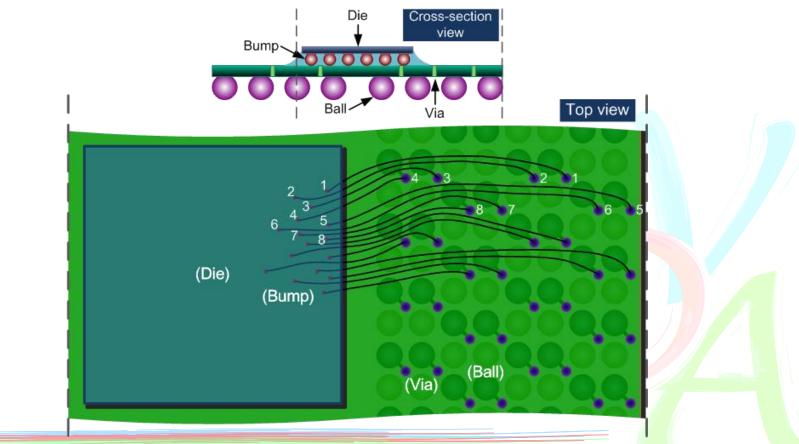
—The design rules for chip and package.

Output:

—The assigned net names and locations for p I/Os and p bumps (p = n).

—The preliminary assignment provided for chip-level core-I/O placement and packagelevel bump-ball routing.

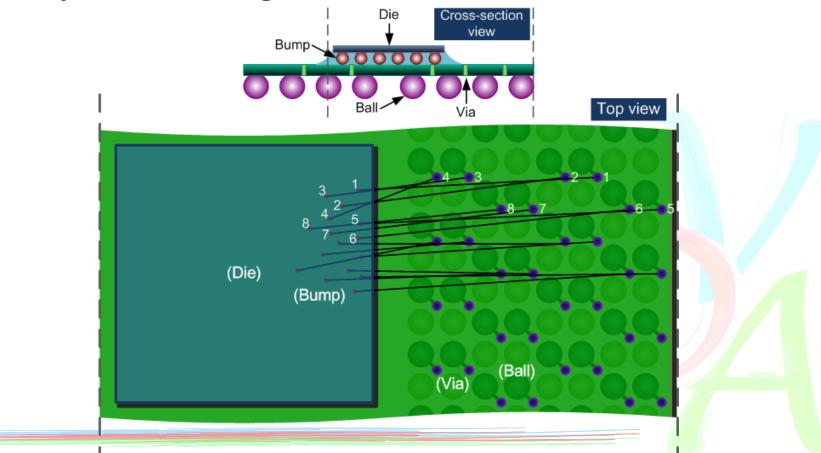
Assignment criteria:


-Minimum possible routing layer (minimum net crossing number).

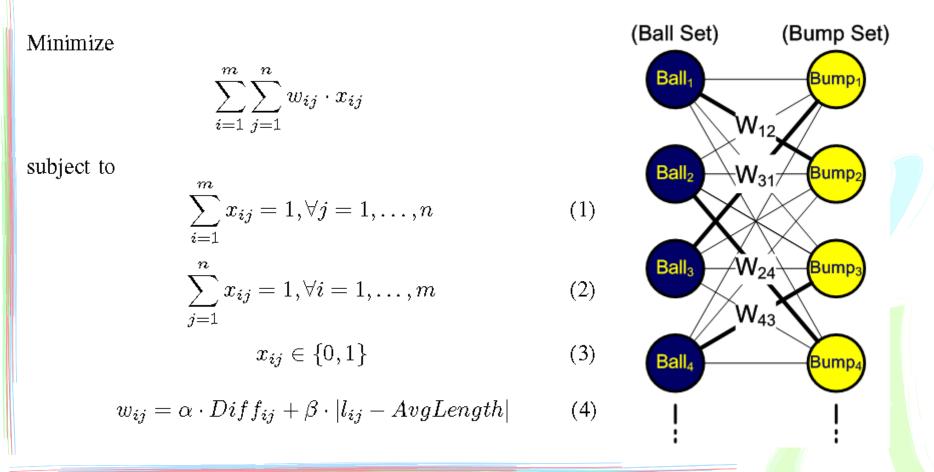
-Minimum timing delay (minimum total net length).

-Minimum signal skew (minimum sum of length difference/deviation on each net).

Package-aware I/O-bump planning methods


Heuristic SORT: Double Sorting for Planar Planning

*The monotonic routing is a route with no U-turn path. It consumes less routing resource and results in higher routing 2011/01/28 completion compared with nonmonotonic routing [6].


Package-aware I/O-bump planning methods (cont.)

Heuristic GREEDY: Shortening Flylines Between I/O-Bumps and Package Balls

Package-aware I/O-bump planning methods (cont.)

Optimization WBIPT: Matching-Based Assignment

* where $Diff_{ij} = /Order_{ball_i}$ -Order_ $bump_j$ is obtained through directly subtracting the order of $Bump_j$ from $Ball_i$, and 2011/01/28 therefore calculating the upper bound of crossing number [14].

Experimental Results

The industrial chip designs

	Peripheral I/O				Area-Array I/O		
	Tech.	Die	I/O	I/O	Die	I/O-bump	Die
	(um)	size	size	number	size	tile size	size
		(um^2)	(um^2)		(um^2)	(um^2)	difference
d1	0.18	2500^{2}	115 imes 65	220	2327 ²	160 imes 80	-6.92%
*d2	0.18	3250 ²	200 imes 60	188	3475 ²	160 imes 80	+6.93%
* d3	0.18	2510^{2}	140 imes 65	130	2742^{2}	160 imes 80	+9.25%
d4	0.13	2580^{2}	120 imes 75	200	2364^{2}	160 imes 80	-8.39%
d5	0.13	4720^{2}	115 imes 50	628	4600^{2}	160 imes 80	-2.55%
d6	0.09	6800^{2}	175 imes 65	390	6645 ²	160 imes 80	-2.29%
	(The utilization rate of core cells is kept the same)						

* d2 and d3 are core-limited designs.

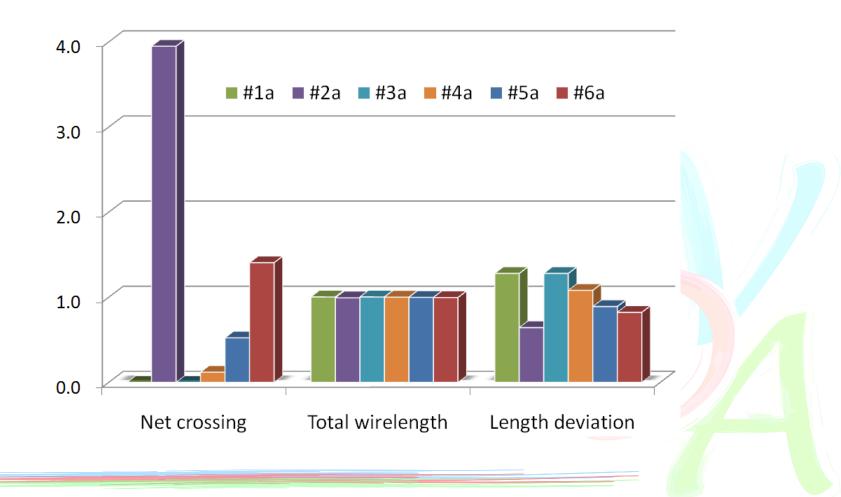
Experimental Results (cont.)

The summary of six I/O-bump planning methods

	I/O-Bump Planning Method
#1	SORT
#2	GREEDY
# 3	$WBIPT \ (\alpha = 5000, \beta = 1.0)$
# 4	$WBIPT \ (\alpha = 2500, \beta = 1.0)$
# 5	WBIPT ($\alpha = 1000, \beta = 1.0$)
 ₿6	$WBIPT \ (\alpha = 500, \ \beta = 1.0)$

The I/O-bump planning on test case d5 (random)

	Flyline criteria					
	Net	Wireler	ngth	Length deviation		runtime
	crossing	Total (um)	Increase	Total (um)	Increase	(sec)
$\sharp 1a$	0	5473480	1.010x	1432024	1.989x	< 2.0
$\sharp 2a$	1056	5416680	—	720120	—	< 2.0
# 3a	0	5473480	1.010x	1432024	1.989x	< 5.5
$\sharp 4a$	32	5461600	1.008x	1209704	1.680x	< 5.5
$\sharp 5a$	140	5447080	1.006 x	996644	1.384x	< 5.5
$\sharp 6a$	376	5437040	1.004 x	920888	1.279 x	< 5.5
	("-" stands for the baseline)					


Experimental Results (cont.)

The I/O-bump planning on test case d5 (uniform)

	Flyline criteria						
	Net Wireler		ngth	Length deviation		runtime	
	crossing	Total (um)	Increase	Total (um)	Increase	(sec)	
#1b	0	5813320	1.007x	1645728	1.167x	< 2.0	
#2b	1432	5775240	—	1410436	—	< 2.0	
# 3 b	0	5813320	1.007x	1645728	1.167x	< 5.5	
#4b	24	5802480	1.005x	1505192	1.067x	< 5.5	
#5b	32	5794920	1.003x	1480016	1.049x	< 5.5	
#6 ₽	148	5786320	1.002x	1374196	0.974x	< 5.5	
	("-" stands for the baseline)						

Experimental Results (cont.)

Results of normalized performance metrics

Conclusion

We propose a concurrent design flow which completes the core-I/O placement and package routing in parallel.

With our I/O-bump tile designs and I/O-row based scheme, we improve the flexibility in arranging I/Os and bumps.

Two heuristics and one optimization algorithm are provided to implement the package-aware I/O-bump planning.

Thank You