BEEBH AR
61' City University
of Hong Kong

WUCC: Joint WCET and Update Conscious
Compilation for Cyber Physical Systems

Yazhi Huang
Mengying Zhao
Chun Jason Xue

Department of Computer Science
City University of Hong Kong

Outline

e Introduction

* Motivational example
 Problem analysis

 The proposed algorithm
 Experimental results

e Conclusions

2/23/2013

Introduction

_'/ ‘__ Controller
/ .-\cnr:itm-\ '{_ I T .-\/C‘“:’ trolle
- ' Network y omreller
: Sel;;'ﬁol'-l— I}\;f (wiredfwireless) ~ '}- D
- . 1:11131’/, \“\5\: §/ / SHEI: '
Cyber physical systems e e
ez Physical n'arlri _—_

— Usually real-time systems
— A number of sensor nodes
- Sensor nodes : powered by batteries, with preloaded code
— Code update: wireless communication, energy consuming

Monitoring Network

Respirati

Living Network

o geE

. Sps tems and Networks

2/23/2013 3

Introduction

Challenges of cyber physical systems

Reduce “——— Code Update Problem:

update - Update of preloaded code on remote sensor
nodes powered by batteries is extremely
energy consuming.

-~ WCET problem:

— CPSs are often real-time embedded systems.
Therefore, worst-case execution time (WCET) is
an important real-time constraint

2/23/2013

Previous works

- Code Update Problem: Li et al. proposed an update
conscious compilation technique to improve the code similarity for

energy consumption minimization in the wireless sensor network.

(“UCC: update conscious compilation for energy efficiency in wireless sensor network”
in PLDI 07)

- WCET problem: Falk presented a WCET-aware register
allocator to avoid spill code generation along the critical path of a

program for WCET reduction in real-time embedded systems.
(“WCET-aware register allocation based on graph coloring” in DAC 09)

— Limitations:
— UCC: Too many MOVE insertion = Increase in WCET
— WCET-aware RA: Increase in code difference

— Our goal is to reduce WCET and code difference
simultaneously for real-time cyber physical systems

2/23/2013

Motivational example

WCEP BB1

}a—»Rl
}b—»Rl

Non-WCEP BB2

}c—>R3

d->»R3

X 1000

— BB1is on WCEP
while BB2 is not

— (a) (d) are original

code
a—>»R2

a—>R1

sa—>»R2

> — (b) (e) are changed

b>R1 code

— (c) (f) are update
conscious
compilation solution

— With UCC

_ technique, code
e»Re| | e 2R3 similarity is
Z)OVEdR"’ i improved by

2 I N }HR4 inserting necessary
MOVE operations

b—>R1

X 100

>
d->R3 d->R3

2/23/2013

Motivational example

Approach

Negative WCET effect

Code diff

Energy saving

ucc [2]

100%

0%

100%

| Proposed

0% - 10%

25%

75% |

WCET [1]

0%

100%

0%

— By selecting appropriate basic blocks for
UCC, most of code similarity may be achieved
and at the same time have less negative
effect on a program’'s WCET

IS

W

2/23/2013

If implementing WCET-
aware technique without
considering code update,
code similarity benefit is
0% (i.e. code difference is
100%)

If only implementing UCC,
relative code difference is
0%, but relative WCET
increment is 100%

The proposed technique
only implements UCC for
WCEP block BB1, but can
improve most of code
similarity, at 75% in this
example

http://www.google.com/imgres?hl=zh-CN&biw=1843&bih=873&gbv=2&tbm=isch&tbnid=wjMfK1W5DgmHqM:&imgrefurl=http://www.reddeng.com/reddeng.asp%3Fk%3D%25B5%25E7%25B5%25C6%26gs%3D0&docid=piRKhi0HggNCpM&imgurl=http://www.reddeng.com/img/2d00hg/a407c4aef0.jpg&w=150&h=150&ei=Wte8T5HDFcmViQep9s3iDw&zoom=1

Overview

CFG WCET & Code Node Node Update WCEP
"In IR T' Similarity Analysis [~ |Selection| ™ *| Solution » Update [~ >

If the solution can be further improved

— CFG in IR form as input

— WCET analysis and code similarity analysis will be conducted
simultaneously during the compilation process

— Each time select an appropriate CFG node

— Update-conscious compilation technique is implemented in the
selected node

— New WCEP information is calculated and the new version code is
used for next iteration of WCET and code similarity analysis

— This iteration continues until a balanced solution is obtained

2/23/2013 8

Problem analysis

o Strategy for CFG node selection

— Principle:

e improve more node similarity

» have zero or minimal negative effect on WCEP
— Benefit:

» processing this type of nodes first will leave more space
for processing the rest of nodes

* more nodes have potential to be selected and
processed

— Propose:

* Therefore we propose to mark a less frequently
executed node on non-WCEP with more number of
executions and less variables to be updated for
processing first

2/23/2013

Problem analysis

e Update candidate set during node selection

— WCEP change.:

» The candidate node set during node selection might change due
to the potential change of WCEP after a block is processed

— Candidate set re-construction:

» |f WCEP has changed, candidate stet will be re-constructed
en Tfy
b1

— In the figure, execution
path in bold is assumed to |b:¢ b2
be the current WCEP

— In figure (a), non-WCEP

node b3 is select bs b4

— In figure (b), candidate set
IS re-constructed, b4
becomes candidate and is exit
selected (a) (b)

2/23/2013 10

Problem analysis

« A priority model for CFG node selection

2/23/2013

p—_ C'S;
M; x Freg;

(5)

Mi : the number of Move operations that a node i requires.
Freqi : the execution frequency of a node i.
CSi : the code similarity benefit

Suggests : the more code similarity profit per unit potential
increase in WCEP a node can bring, the higher priority it
should be given

Benefit : less negative effect on WCET and more energy
saving benefit

11

Algorithm

— Set a default WCET increment counter
— Calculate WCEP

— Calculate priority

— Select a node based on priority

— Update conscious compilation technique is
applied in the selected node

— Update counter

— Repeat above steps as long as WCET is less
than a given threshold

2/23/2013

12

Experimental results

Relative Code Similarity [%)

100%

80%

60%

40%

20%

=]
-2
o

WCET Versus Code Similarity

. a=15%

o=10%

ol & 48 P P

. o 3‘{\ ey ?‘$ A ey -;}C?
< e «® 5® g

- \b'.c‘ a3 I
%) .gl@c;b \{\\é‘ < W

{(j.Q i@@ Q’EFJ

— With a threshold of 10% increase in WCET, code similarity: 70% --
85%. On average 76% of code similarity is achieved compared to
UCC

— 64% of code similarity can be achieved with 5% threshold while 84%
benefit with 15% threshold

— To summarize, with a small increase in WCET, WUCC can
effectively achieve most of code similarity

2/23/2013 13

Experimental results

 Code difference among three approaches, WCET-aware
technique as comparison base

[vcc | [][wucc] n

Relative Code Difference [%)]
=] e [=5]
2 22 =2
—
% |

. . AR I
Q & W e S DT W e S
W AT KT S @Y @Y P a8 o of s b b N £
Y <E} M %\ < »&& q Q-LP\ .3,%\63} < S

Fig. 7. The code difference of different benchmarks under WUCC, UCC, and
WCET-aware technique. The results of WCET-aware compilation technique
in [1] are used as the comparison base.

— With remarkable WCET benefit, code difference under WUCC is
just a little larger than UCC

2/23/2013

Conclusions

 We propose a compiler level optimization, joint
WCET and update conscious compilation, for
WCET and code difference minimization in cyber
physical systems

A novel CFG node selection heuristic is proposed,
where a priority based model is built by considering
a node’s code similarity benefit, MOVE operation
requirement, and the execution frequency

« We formulate the target problem and implement a
greedy algorithm to achieve a balanced result

2/23/2013 15

FEREH AR
‘.1{ City University
of Hong Kong

| :':”" Ml 1—‘ F:'|I i3 ;__II‘ s I;ll'_ ill.II‘:_.:'-;.IIiJ__II_'_..'_.;I!_”.__I-‘_-'_— E: i _|-.'|ﬂi'f-_
prie et T e R AT

T . .
il ——_—l
gry - L1 N h

Thank you!

Thank you!

