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Introduction

_'/ ‘_\_ Controller
/ .-\cnr:itm-\ '{_ I T .-\/C‘“:’ trolle
- ' Network y omreller
: Sel;;'ﬁol'-l— I}\;f (wiredfwireless) ~ '}- D
- . 1:11131’/, \“\5\: §/ / SHEI: '
Cyber physical systems e e
ez Physical n'arlri _—_

— Usually real-time systems
— A number of sensor nodes
- Sensor nodes : powered by batteries, with preloaded code
— Code update: wireless communication, energy consuming
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Introduction

Challenges of cyber physical systems

Reduce “——— Code Update Problem:

update - Update of preloaded code on remote sensor
nodes powered by batteries is extremely
energy consuming.

-~ WCET problem:

— CPSs are often real-time embedded systems.
Therefore, worst-case execution time (WCET) is
an important real-time constraint
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Previous works

- Code Update Problem: Li et al. proposed an update
conscious compilation technique to improve the code similarity for

energy consumption minimization in the wireless sensor network.

(“UCC: update conscious compilation for energy efficiency in wireless sensor network”
in PLDI 07)

- WCET problem: Falk presented a WCET-aware register
allocator to avoid spill code generation along the critical path of a

program for WCET reduction in real-time embedded systems.
(“WCET-aware register allocation based on graph coloring” in DAC 09)

— Limitations:
— UCC: Too many MOVE insertion = Increase in WCET
— WCET-aware RA: Increase in code difference

— Our goal is to reduce WCET and code difference
simultaneously for real-time cyber physical systems
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Motivational example
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Motivational example

Approach

Negative WCET effect
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— By selecting appropriate basic blocks for
UCC, most of code similarity may be achieved
and at the same time have less negative
effect on a program’'s WCET
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If implementing WCET-
aware technique without
considering code update,
code similarity benefit is
0% (i.e. code difference is
100%)

If only implementing UCC,
relative code difference is
0%, but relative WCET
increment is 100%

The proposed technique
only implements UCC for
WCEP block BB1, but can
improve most of code
similarity, at 75% in this
example
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Overview

CFG WCET & Code Node Node Update WCEP
"In IR T' Similarity Analysis [~ |Selection| ™ *| Solution » Update [~ >

If the solution can be further improved

— CFG in IR form as input

— WCET analysis and code similarity analysis will be conducted
simultaneously during the compilation process

— Each time select an appropriate CFG node

— Update-conscious compilation technique is implemented in the
selected node

— New WCEP information is calculated and the new version code is
used for next iteration of WCET and code similarity analysis

— This iteration continues until a balanced solution is obtained
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Problem analysis

o Strategy for CFG node selection

— Principle:

e improve more node similarity

» have zero or minimal negative effect on WCEP
— Benefit:

» processing this type of nodes first will leave more space
for processing the rest of nodes

* more nodes have potential to be selected and
processed

— Propose:

* Therefore we propose to mark a less frequently
executed node on non-WCEP with more number of
executions and less variables to be updated for
processing first
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Problem analysis

e Update candidate set during node selection

— WCEP change.:

» The candidate node set during node selection might change due
to the potential change of WCEP after a block is processed

— Candidate set re-construction:

» |f WCEP has changed, candidate stet will be re-constructed
en Tfy
b1

— In the figure, execution
path in bold is assumed to  |b:¢ b2
be the current WCEP

— In figure (a), non-WCEP

node b3 is select bs b4

— In figure (b), candidate set
IS re-constructed, b4
becomes candidate and is exit
selected (a) (b)
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Problem analysis

« A priority model for CFG node selection
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Mi : the number of Move operations that a node i requires.
Freqi : the execution frequency of a node i.
CSi : the code similarity benefit

Suggests : the more code similarity profit per unit potential
increase in WCEP a node can bring, the higher priority it
should be given

Benefit : less negative effect on WCET and more energy
saving benefit

11



Algorithm

— Set a default WCET increment counter
— Calculate WCEP

— Calculate priority

— Select a node based on priority

— Update conscious compilation technique is
applied in the selected node

— Update counter

— Repeat above steps as long as WCET is less
than a given threshold
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Experimental results
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— With a threshold of 10% increase in WCET, code similarity: 70% --
85%. On average 76% of code similarity is achieved compared to
UCC

— 64% of code similarity can be achieved with 5% threshold while 84%
benefit with 15% threshold

— To summarize, with a small increase in WCET, WUCC can
effectively achieve most of code similarity
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Experimental results

 Code difference among three approaches, WCET-aware
technique as comparison base
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Fig. 7. The code difference of different benchmarks under WUCC, UCC, and
WCET-aware technique. The results of WCET-aware compilation technique
in [1] are used as the comparison base.

— With remarkable WCET benefit, code difference under WUCC is
just a little larger than UCC
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Conclusions

 We propose a compiler level optimization, joint
WCET and update conscious compilation, for
WCET and code difference minimization in cyber
physical systems

A novel CFG node selection heuristic is proposed,
where a priority based model is built by considering
a node’s code similarity benefit, MOVE operation
requirement, and the execution frequency

« We formulate the target problem and implement a
greedy algorithm to achieve a balanced result
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Thank you!

Thank you!




