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Instruction-set architecture (1SA) synthesis
o Embedded processors are widely used In
various applications

ISA synthesis: application-specific extension
= Efficient speedup with less cost (area, power, etc.)

Custom instruction (CIl) selection
= Critical computation: Cls - Custom accelerator (CA)
= The others: basic instructions (Bls) > ALU

Customizable processor

Al

] Basic processor
I Custom accelerator




Clock frequency

A lot of challenging issues of CMOS scaling
Cannot expect the frequency scaling

Process variation
Propagation delay varies by environments

Conventionally, deterministic Worst-case
worst-case approach delay has little
Improvement
Include extremely rare casescwIOS ¥
— pessimistic! =caling ‘
Stochastic approach f

E.g., Statistical Static Timing
Analysis (SSTA)
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Previous works (1)

SSTA-based ISA synthesis works

[Kamal'll]: CI selection with minimum timing
yield degradation

Timing yield: possibility to complete operations for a
given target clock

Timing yield degradation: may be intolerable for some
applications

[Kamal'l2]: Maximum speedup with no timing
yield degradation
An extra cycle to Cls with less-than-1.0 timing yield

Static approach only: extra cycles even when no
timing faults occur — pessimistic!

Timing violation by Bls are not considered




Previous works (2)

Variation-tolerable works in other fields
Architectures: Razor [Ernst'O3], etc.
Detect and correct timing faults dynamically

High-level synthesis: SSTA-based works
([Cong'09], etc.)

Use Razor-flipflops for aggressive clocking
without timing yield degradation

HW approach only - very costly!

Comprehensive approach from both HW/SW
viewpoints IS necessary
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VISA synthesis

VISA: Variation-aware I1SA synthesis

Performance improvement by making effective
use of process variation on both HW and SW

HW: Dynamic fault detection & correction with
minimum performance degradation for aggressive
clocking (based on Razor)

SW: SSTA-based CI selection effectively by
exploiting application features

Handle timing violation of both Bls & Cls

Applicable to any processors which have at
least a mechanism of dynamic timing fault

detection




Razor processor architecture (1)

Razor flipflop: Main flipflop + shadow
latch (delayed clock)

Fault detection: compares the results

Fault correction: simply copies the correct
result to the main flipflop during 1-cycle stall
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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Our architecture model
7 Removable stalls:
If instructions In the EX and ID stages have
No temporal dependency (data dependency)
= Judge from forwarding signals

No physical dependency (resource sharing in EX)
= Judge from control signals to ALU/custom accelerators
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Cl selection

SSTA + application features
Speedup effects of individual instances of Cls
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Cl selection

1 SSTA + application features
Speedup effects of individual instances of Cls
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Cl selection: constraint

Only Cls which always finish by the setup
time of the shadow latch are selectable
Const.: y;(c;T+d) = 1.0
yi(t): timing yield of instruction i at time t
c;: minimum latency of instruction i in the EX stage
T: target clock period
d: delayed setup time of the shadow latch

All Bls must hold the Const.

Cls are pruned by the Const.
Cls are also pruned by an area constraint




Outlines
EN I
o Background
o Previous works

o Variation-aware ISA (VISA) synthesis
o Razor architecture
o Our architecture (HW-side approach)
o SSTA-based CI selection (SW-side approach)

o ExXperiments
7 Conclusions



Experimental setup

Benchmarks: adpcm, aes, chenidct, gsm, and sha,
and wavelet
Target device: 90nm technology

Ty 1 Vi(ciT,) = 1.0 for all Bls and Cls

T, 1 yi(cT;) = 1.0 for all Bls

T, 1 yi(cT,) < 1.0 & y(cT,+d) = 1.0 for some Bls
Simulator: SimpleScalar

MIPS (PISA)

Comparative methods

A deterministic worst-case method (DW): only for T,

An existing SSTA-based method (ES) [Kamal'12]:
an extra cycle (stall) is always given to Cls with less-
than-1.0 timing yield — only for T,

Our proposed method (VISA): compensation by both
HW and SW — for T, and T,

All performed qgreedily




Experimental results: speedup
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o Not very large speedup

o Similarly with DM, deterministic approaches
quickly face the clock wall



Experimental results: speedup
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o Larger speedup than DM, but still pessimistic in that
ES always gives a stall for Cls with less-than-1.0
timing yield

o For sha with 3x and 6x, even less speedup than DM



Experimental results: stalls

No. of instr. with a stall / No. of instr. with less-than-1.0 timing yield

ES (T,  2/2 2/2 18/18 7/7 1/1 3/3

VISA(T,) 0/70 0/112 6/78 4/95 0/17 1/22

VISA(T,) 497/875 618/1155 417/633 547/907 390/689 366/655
ES

100% of Cls with less-than-1.0 timing yield
always take a stall for T,
VISA

Up to 8% of such Cls may take a stall for T,
- Effectively remove stalls

Can select more effective Cls by considering
application features



Experimental results: speedup
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0 VISA
o More speedup than ES for T,
m Stall removal & effective CIl selection

o Outperform DM and ES by up to 61.3% and
13.0%0, respectively



Experimental results: speedup
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o More effective for more aggressive clocking

o Outperform DM and ES by up to 78.0% and
49.4%0, respectively, for T,



Conclusion

VISA: novel Variation-aware ISA synthesis

Make effective use of process variation
comprehensively from both HW and SW

HW: Dynamic fault detection & correction with
minimum performance degradation

SW: SSTA-based CI selection considering
application features

Substantially improves performance compared
with existing methods
More effective for more aggressive clocking

Up to 78.0% and 49.4% performance improvement
over two existing approaches




