VISA SYNTHESIS: VARIATION-

AWARE INSTRUCTION SET
ARCHITECTURE SYNTHESIS

Yuko Hara-Azumi® Takuya Azumi™ Nikil D. Dutt?#
*Nara Institute of Science and Technology

TRitsumeikan University fUniversity of California, Irvine

— ASPDAC < Jan. 237 2013

Outlines

Background
Previous works

Variation-aware ISA (VISA) synthesis
Razor architecture
Our architecture (HW-side approach)
SSTA-based ClI selection (SW-side approach)

Experiments
Conclusions

Instruction-set architecture (1SA) synthesis
o Embedded processors are widely used In
various applications

ISA synthesis: application-specific extension
= Efficient speedup with less cost (area, power, etc.)

Custom instruction (CIl) selection
= Critical computation: Cls - Custom accelerator (CA)
= The others: basic instructions (Bls) > ALU

Customizable processor

Al

] Basic processor
I Custom accelerator

Clock frequency

A lot of challenging issues of CMOS scaling
Cannot expect the frequency scaling

Process variation
Propagation delay varies by environments

Conventionally, deterministic Worst-case
worst-case approach delay has little
Improvement
Include extremely rare casescwIOS ¥
— pessimistic! =caling ‘
Stochastic approach f

E.g., Statistical Static Timing
Analysis (SSTA)

celay

Clock frequency

A lot of challenging issues of CMOS scaling
Cannot expect the frequency scaling

Process variation
Propagation delay varies by environments

Conventionally, deterministic Worst-case
worst-case approach delay has little
Improvement
Include extremely rare casescwIOS ¥
— pessimistic! =caling ‘
Stochastic approach f

E.g., Statistical Static Timing
Analysis (SSTA)

{Aggressive clocking L

delay
I | \ |)
95% satisfy the timing

Previous works (1)

SSTA-based ISA synthesis works

[Kamal'll]: CI selection with minimum timing
yield degradation

Timing yield: possibility to complete operations for a
given target clock

Timing yield degradation: may be intolerable for some
applications

[Kamal'l2]: Maximum speedup with no timing
yield degradation
An extra cycle to Cls with less-than-1.0 timing yield

Static approach only: extra cycles even when no
timing faults occur — pessimistic!

Timing violation by Bls are not considered

Previous works (2)

Variation-tolerable works in other fields
Architectures: Razor [Ernst'O3], etc.
Detect and correct timing faults dynamically

High-level synthesis: SSTA-based works
([Cong'09], etc.)

Use Razor-flipflops for aggressive clocking
without timing yield degradation

HW approach only - very costly!

Comprehensive approach from both HW/SW
viewpoints IS necessary

Outlines

Variation-aware ISA (VISA) synthesis
Razor architecture
Our architecture (HW-side approach)
SSTA-based ClI selection (SW-side approach)

Experiments
Conclusions

VISA synthesis

VISA: Variation-aware I1SA synthesis

Performance improvement by making effective
use of process variation on both HW and SW

HW: Dynamic fault detection & correction with
minimum performance degradation for aggressive
clocking (based on Razor)

SW: SSTA-based CI selection effectively by
exploiting application features

Handle timing violation of both Bls & Cls

Applicable to any processors which have at
least a mechanism of dynamic timing fault

detection

Razor processor architecture (1)

Razor flipflop: Main flipflop + shadow
latch (delayed clock)

Fault detection: compares the results

Fault correction: simply copies the correct
result to the main flipflop during 1-cycle stall

I - ' cycle 11 cycle2! cycle 31 cycle 4

____________________________ v stall
L

]

ck 71 [L 1

Main flipflop

Shadow |>
latch [*

clk : -------------------------- Error
d _clk

dekil [[

Razor processor architecture (2)

ADDI R1 R1 7 ADDI - - -0 o)

SUBI R2 R2 1 . g g g g

NEW R5 R1 R3 rl. - P P o
OR R1 R1 R2 \ ® | o 8 ®
AND R5 R5 R6 Error=0 Error=01 Error=0 Error=0
ADDI R4 R4 3 {

4
S

&= ADDI

Razor processor architecture (2)

SuUBI ADD!

ADDI R1 R1 7 20 % = 2

SUBI R2R2 1 N N N N

NEW R5 R1 R3|| Ctrl. > > > >
OR R1 R1 R2 : u'-'.;\ u/’%\ 0/‘8\ - o‘}\
AND R5 R5 R6 Error=0 Error=(;l ErroFo Error=0
ADDI R4 R4 3 4(

4
NEIEDS

|#= = ADDI SUBI
ADDI

Razor processor architecture (2)

NEW SUB! ADD!

ADDI R1 R1 7/

& & 1 &
SUBI R2R2 1 N N N N
NEW R5 R1 R3[| Ctrl. r;E’ % ??E’ ,%
OR R1 R1 R2 . % u/u\ o/u_ c}n\
AND R5 R5 R6 Error=0 Error=(;l ErroFo Error=0

ADDI R4 R4 3 4(
7
EYEIEIE

&= ADDI SUBI NEW

ADDI SUBI
ADDI

Razor processor architecture (2)

OR NEW SUBI ADDI
ADDI R1 R1 7 20 % %
SUBI R2 R2 1 N N N
NEW R5 R1 R3|| Ctrl. - - =
OR R1 R1 R2 : i_ & 07‘8_ o‘}\
AND R5 R5 R6 Error=0 Error=(;l ErroF() Error=0
ADDI R4 R4 3 {

FREIEIE

&= ADDI SUBI NEW OR
ADDI SUBI NEW
ADDI SuUBI
ADDI

Razor processor architecture (2)

ADDI R1 R1 7 AND -~ — — NEW - SUBL . ADD!
SUBI R2 R2 1 g g g g

NEW R5 R1 R3|| Ctrl. - £ ad =

OR R1 R1 R2 : o k& ﬁ_ 3

AND R5 R5 R6 Error=0 Erro/r}ﬂ Error=0 Errof—\o

ADDI R4 R4 3

ADDI SUBI NEW OR

ADDI SUBI NEVLE

ADDI SUBI
ADDI

Razor processor architecture (2)

ADDI R1 R1 7 ADDI AND OR NEW SUBI
2 o 2 o

SUBI R2 R2 1 N N N N

NEW R5 R1 R3|| Ctrl. n al > ~

OR R1R1R2 Tstall! o/fg\ 07%\ o/rg N o/fg

ﬁgg IR:4R:4R§ { Error=0 Error=0—' Error=1 Error=

El P
detects the timing

ADDI SUBI NEW OR AND ADDI fault and issues

ADDI SUBI NEW OR AND the Error signal
.. ADDI SUBI NEW* OR %
.. .. ADDI SUBI NEW*

ADDI SUBI

Razor processor architecture (2)

stall stall stall NEW stall
ADDI R1 R1 7 20 0 = %

SUBI R2 R2 1 N N N N

NEW R5 R1 R3|| Ctrl. b % = -

OR R1 R1 R2 - §\ & §_ o/‘% !
AND RS RS R6 Error=0 Error=0—' Error=0 Error=0
ADDI R4 R4 3 { |

FRICOEEIE

ADDI SUBI NEW OR AND ADDI stall
ADDI SUBI NEW OR AND stall

The correct

ADDI SUBI NEW* OR stall result of MULT
ADDI SUBI NEW* NEW is provided to
ADDI SUBI stall the MEM stage

Razor processor architecture (2)

ADD! . AND OR NEW
ADDI R1 R1 7 20 % %

SUBI R2 R2 1 N N N

NEW R5 R1 R3|| Ctrl. > > >

OR R1 R1 R2 \ | : @ @

AND R5 R5 R6 Error=0 Error=(;l ErroF() Error=0
ADDI R4 R4 3 { |

ADDI SUBI NEW OR

ADDI SUBI NEW*

ADDI SUBI
ADDI

AND
OR

NEW*
SUBI

e

ADDI SUBI NEW OR AND ADDI

stall
stall ADDI
stall AND

NEW OR
stall NEW

Razor processor architecture (2)

ADDI AND OR NEW
ADDI R1 R1 7 - - - o)

SUBI R2 R2 1 o g g E g

NEW R5 R1 R3|| ctrl. > > al al

OR R1 R@Z \ ® | o 07‘8_ o/‘u”\

AND R5 R6 Error=0 Error=0—| Error=0 Error=0
ADDI R4 R4 3 ,

/OR has no u

dependency
from & share »

no arithmetic

NEW can be
executed
with no stall

unit with NEW

WB

AND ADDI
N OR AND

3l NEW* OR

A{DI SUBI NEW#*

ADDI SUBI

stall
stall
stall

NEW
stall

this stall is

gle]s
necessary!

AND

OR
NEW

Razor processor architecture (2)

ADDI AND NEW/OR
ADDI R1 R1 7 20 % %
SUBIR2R2 1 N N N
NEW R5 R1 R3|| Ctrl- > > >

) ™ ™
OR R1 R1 R2 S) G By °7“\
AND R5 R5 R6 Error=0 Error=(;l ErroF() Error=0
ADDI R4 R4 3 { |

&;l--

ADDI SUBI NEW OR AND ADDI
ADDI SUBI NEW OR AND ADDI
ADDI SUBI NEW* OR AND ADDI

ADDI SUBI NEW* NEW/OR AND
ADDI SUBI - NEW/OR

Our architecture model
7 Removable stalls:
If instructions In the EX and ID stages have
No temporal dependency (data dependency)
= Judge from forwarding signals

No physical dependency (resource sharing in EX)
= Judge from control signals to ALU/custom accelerators

I’ilill’
forA_ Forwa rding]:l
1S _ ?4(1:@ ya forwarding|signal

(g
9y Jozey “

Razor's Error signal

| —

Extension is only for the EX-MEM register__l

Cl selection

SSTA + application features
Speedup effects of individual instances of Cls

Cl (NEW) Obtain the speedup of

2 Instances Cls considering
Speedup = 10 cycles/exec. : _
Penalty for register file

Timing yield = 0.9
. accesses

SUBI R2R2 1

NEW,: NEW RE R1 R3 Neighboring instructions
8 iterations /|y 1 R1 R2 of its Ir.lsta_nces
(=application features)
ADDI R4 R4 8

NEW,: NEW R6 R4 R2
20 iterations /|AND R4 R4 @

%0
Need a stall

Cl selection

1 SSTA + application features
Speedup effects of individual instances of Cls

r

Cl (NEW)

N

2 Instances

Speedup = 10 cycles/exec.
.__Timing yield = 0.9

J

[NEW, :

8 iterations

NEW R5 R1 R3

}SUBI R2R21
OR R1 R1 R2

ADDI R4 R4 8

[NEW,,:

20 iterations

}NEW R6 R4 R2
AND R4 R4 §6).

Benefit by NEW

= average speedup by NEW,
+ average speedup by NEW,
= {0.9x10 + 0.1x(10-0)}x8
+ {0.9x10 + 0.1x(10-1)}x20
=80 + 198]

=278
Penalty (stall)

%0
Need a stall

Cl selection: constraint

Only Cls which always finish by the setup
time of the shadow latch are selectable
Const.: y;(c;T+d) = 1.0
yi(t): timing yield of instruction i at time t
c;: minimum latency of instruction i in the EX stage
T: target clock period
d: delayed setup time of the shadow latch

All Bls must hold the Const.

Cls are pruned by the Const.
Cls are also pruned by an area constraint

Outlines
EN I
o Background
o Previous works

o Variation-aware ISA (VISA) synthesis
o Razor architecture
o Our architecture (HW-side approach)
o SSTA-based CI selection (SW-side approach)

o ExXperiments
7 Conclusions

Experimental setup

Benchmarks: adpcm, aes, chenidct, gsm, and sha,
and wavelet
Target device: 90nm technology

Ty 1 Vi(ciT,) = 1.0 for all Bls and Cls

T, 1 yi(cT;) = 1.0 for all Bls

T, 1 yi(cT,) < 1.0 & y(cT,+d) = 1.0 for some Bls
Simulator: SimpleScalar

MIPS (PISA)

Comparative methods

A deterministic worst-case method (DW): only for T,

An existing SSTA-based method (ES) [Kamal'12]:
an extra cycle (stall) is always given to Cls with less-
than-1.0 timing yield — only for T,

Our proposed method (VISA): compensation by both
HW and SW — for T, and T,

All performed qgreedily

Experimental results: speedup
BEZAl =DW =mES =VISA(T:) mvISA(T:z) EEE——

200.00% q 180.00% 180.00% onidet
aes cheniac
180.00% a pcm
160.00% 160.00%
160.00% -
140.00% 140.00% 1
140.00% -4
120.00% A 120.00% A 120.00% 1
100.00% - 100.00% - 100.00% -
ich Gx 12x 18x 24x 30x ax Bx 12x 18x 24x 30x ax Bx 12x 18x 24x 30x
160.00% 180.00% 180.00%

sha wavelet
160.00%

160.00%

140.00%

140.00% - 140.00% -

120.00% -

120.00% - 120.00% A

100.00% - 100.00% - 100.00% -

3x Bx 12x 18x 24x 30x 3x Bx 12x 18x 24x 30x 3x Bx 12x 18x 24x 30x
x-axis: Area introduced for Cls (#x ALU's area)
o0 DM y-axis: Execution time improvement

o Not very large speedup

o Similarly with DM, deterministic approaches
quickly face the clock wall

Experimental results: speedup
BEEM =DW =mES =VISA(T:) mvISA(T:z) EEE——

200.00% d 180.00% 180.00% h . t
14aC

180.00% | AGPCMN aes chen
160.00% 160.00%

160.00% -
140,00% 140.00% 1

140.00% -4

120.00% A 120.00% A 120.00% 1

100.00% - 100.00% - 100.00% -

ich Gx 12x 18x 24x 30x ax Bx 12x 18x 24x 30x ax Bx 12x 18x 24x 30x
160.00% 180.00% 180.00%

wavelet

160.00% 160.00%

140.00%
140.00% - 140.00% -

120.00% -
120.00% 120.00% H

100.00% - 100.00% 100.00% -

3x 6x 12x 18x 24x 30x 12x 18x 24x 30x 3x Bx 12x 18x 24x 30x
x-axis: Area introduced for Cls (#x ALU's area)
0 ES y-axis: Execution time improvement

o Larger speedup than DM, but still pessimistic in that
ES always gives a stall for Cls with less-than-1.0
timing yield

o For sha with 3x and 6x, even less speedup than DM

Experimental results: stalls

No. of instr. with a stall / No. of instr. with less-than-1.0 timing yield

ES (T, 2/2 2/2 18/18 7/7 1/1 3/3

VISA(T,) 0/70 0/112 6/78 4/95 0/17 1/22

VISA(T,) 497/875 618/1155 417/633 547/907 390/689 366/655
ES

100% of Cls with less-than-1.0 timing yield
always take a stall for T,
VISA

Up to 8% of such Cls may take a stall for T,
- Effectively remove stalls

Can select more effective Cls by considering
application features

Experimental results: speedup

BECH =DW ®ES =VISA(T1) = visA(Tz) B ——

200.00% d 180.00% 180.00% h - t
adpcm aes cheniac
180.00% p
160.00% 160.00%
160.00%
140.00% 140.00% 140.00% -
120.00% - 120.00% 1 120.00%
100.00% - 100.00% - 100.00%
3 Bx ax Ix B 12x
160.00% 180.00% 180.00%
g sha wavelet
140.00°% 160.00% 160.00%
140.00% - 140.00% -
120.00% -
120.00% - 120.00% -
100.009% - 100.00% - 100.00% -
3x Bx 3x 3x Bx 12x

x-axis: Area introduced for Cls (#x ALU's area)
y-axis: Execution time improvement

0 VISA
o More speedup than ES for T,
m Stall removal & effective CIl selection

o Outperform DM and ES by up to 61.3% and
13.0%0, respectively

Experimental results: speedup
BEEll =DW =mES =VISA(T:) mvISA(T:z) EEE——

200.00% 180.00% 180.00%

50000 | ADPCM aes chenidct
160.00% 160.00%
160.00% 1
140,00% 140.00% -
140.00% -
120.00% 1 120.00% 1 120.00% 1
100.00% A 100.00% A 100.00% -
3x Gx 12% 18x 24x 30x 3x 6x 12x 18x 24x 30x 3x Bx 12 18x 24x 30x
160.00% 180.00% 180.00%

wavelet

160.00% 160.00%

140.00%

140.00% - 140.00% -

120.00% -

120.00% - 120.00% A

100.00% - 100.00% - 100.00% -
3x Bx 12x 18x 24x 30x 3x Bx 12x 18x 24x 30x 3x Bx 12x 18x 24x 30x
x-axis: Area introduced for Cls (#x ALU's area)
1 VISA y-axis: Execution time improvement

o More effective for more aggressive clocking

o Outperform DM and ES by up to 78.0% and
49.4%0, respectively, for T,

Conclusion

VISA: novel Variation-aware ISA synthesis

Make effective use of process variation
comprehensively from both HW and SW

HW: Dynamic fault detection & correction with
minimum performance degradation

SW: SSTA-based CI selection considering
application features

Substantially improves performance compared
with existing methods
More effective for more aggressive clocking

Up to 78.0% and 49.4% performance improvement
over two existing approaches

