
VISA SYNTHESIS: VARIATION-
AWARE INSTRUCTION SET
ARCHITECTURE SYNTHESIS

ASP-DAC : Jan. 23rd 2013

Yuko Hara-Azumi* Takuya Azumi† Nikil D. Dutt‡

*Nara Institute of Science and Technology
†Ritsumeikan University ‡University of California, Irvine

Outlines

 Background
 Previous works

 Variation-aware ISA (VISA) synthesis
 Razor architecture
 Our architecture (HW-side approach)
 SSTA-based CI selection (SW-side approach)

 Experiments
 Conclusions

2

Instruction-set architecture (ISA) synthesis

 Embedded processors are widely used in
various applications
 ISA synthesis: application-specific extension
 Efficient speedup with less cost (area, power, etc.)

 Custom instruction (CI) selection
 Critical computation: CIs  Custom accelerator (CA)
 The others: basic instructions (BIs)  ALU

3

IF ID

M
EM

W
B

EX
E

A
LU

C
A CA CA

Customizable processor

Basic processor
Custom accelerator

 A lot of challenging issues of CMOS scaling
 Cannot expect the frequency scaling

 Process variation
 Propagation delay varies by environments
 Conventionally, deterministic

worst-case approach
 Include extremely rare cases

– pessimistic!
 Stochastic approach
 E.g., Statistical Static Timing

Analysis (SSTA)

Clock frequency
4

Worst-case
delay has little
improvement

CMOS scaling

delay

 A lot of challenging issues of CMOS scaling
 Cannot expect the frequency scaling

 Process variation
 Propagation delay varies by environments
 Conventionally, deterministic

worst-case approach
 Include extremely rare cases

– pessimistic!
 Stochastic approach
 E.g., Statistical Static Timing

Analysis (SSTA)

Clock frequency
5

Worst-case
delay has little
improvement

CMOS scaling

95% satisfy the timing
Aggressive clocking delay

Previous works (1)

 SSTA-based ISA synthesis works
 [Kamal'11]: CI selection with minimum timing

yield degradation
 Timing yield: possibility to complete operations for a

given target clock
 Timing yield degradation: may be intolerable for some

applications
 [Kamal'12]: Maximum speedup with no timing

yield degradation
 An extra cycle to CIs with less-than-1.0 timing yield
 Static approach only: extra cycles even when no

timing faults occur – pessimistic!
 Timing violation by BIs are not considered

6

Previous works (2)

 Variation-tolerable works in other fields
 Architectures: Razor [Ernst'03], etc.
Detect and correct timing faults dynamically

 High-level synthesis: SSTA-based works
([Cong'09], etc.)
 Use Razor-flipflops for aggressive clocking

without timing yield degradation

 HW approach only - very costly!
 Comprehensive approach from both HW/SW

viewpoints is necessary

7

Outlines

 Background
 Previous works

 Variation-aware ISA (VISA) synthesis
 Razor architecture
 Our architecture (HW-side approach)
 SSTA-based CI selection (SW-side approach)

 Experiments
 Conclusions

8

VISA synthesis

 VISA: Variation-aware ISA synthesis
 Performance improvement by making effective

use of process variation on both HW and SW
HW: Dynamic fault detection & correction with

minimum performance degradation for aggressive
clocking (based on Razor)

 SW: SSTA-based CI selection effectively by
exploiting application features

 Handle timing violation of both BIs & CIs
 Applicable to any processors which have at

least a mechanism of dynamic timing fault
detection

9

Razor processor architecture (1)

 Razor flipflop: Main flipflop + shadow
latch (delayed clock)
 Fault detection: compares the results
 Fault correction: simply copies the correct

result to the main flipflop during 1-cycle stall

10

11

Razor processor architecture (2)

ADDI

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

11

Razor processor architecture (2)

SUBI ADDI

12

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

12

Razor processor architecture (2)

NEW SUBI ADDI

13

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

13

Razor processor architecture (2)

OR NEW SUBI ADDI ...

14

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

14

Razor processor architecture (2)

AND OR NEW SUBI ADDI

15

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

15

Timing fault!

Razor processor architecture (2)

ADDI AND OR NEW SUBI

The shadow latch
detects the timing
fault and issues
the Error signal

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

16

stall!

Razor processor architecture (2)

stall stall stall NEW stall

The correct
result of MULT
is provided to
the MEM stage

17

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

17

Razor processor architecture (2)

... ADDI AND OR NEW

18

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

18

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

Razor processor architecture (2)

... ADDI AND OR NEW

OR has no
dependency
from & share
no arithmetic
unit with NEW

NEW can be
executed
with no stall

Actually
this stall is

not
necessary!

0

19

Razor processor architecture (2)

... ADDI AND NEW/OR …
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

0

20

Our architecture model
 Removable stalls:

If instructions in the EX and ID stages have
1. No temporal dependency (data dependency)
 Judge from forwarding signals

2. No physical dependency (resource sharing in EX)
 Judge from control signals to ALU/custom accelerators

21

Not restricted
to RazorI!

Extension is only for the EX-MEM register

CI selection

 SSTA + application features
 Speedup effects of individual instances of CIs

22

…
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
…
ADDI R4 R4 8
NEW R6 R4 R2
AND R4 R4 R6
…

NEW1:
8 iterations

NEW2:
20 iterations

Need a stall

 Obtain the speedup of
CIs considering
 Penalty for register file

accesses
Neighboring instructions

of its instances
(=application features)

CI (NEW)
2 instances

Speedup = 10 cycles/exec.
Timing yield = 0.9

CI selection

 SSTA + application features
 Speedup effects of individual instances of CIs

23

CI (NEW)
2 instances

Speedup = 10 cycles/exec.
Timing yield = 0.9

…
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
…
ADDI R4 R4 8
NEW R6 R4 R2
AND R4 R4 R6
…

NEW1:
8 iterations

NEW2:
20 iterations

Benefit by NEW
= average speedup by NEW1

+ average speedup by NEW2

= {0.9x10 + 0.1x(10-0)}x8
+ {0.9x10 + 0.1x(10-1)}x20
=80 + 198
=278

Need a stall

Penalty (stall)

CI selection: constraint

 Only CIs which always finish by the setup
time of the shadow latch are selectable
 Const.: yi(ciT+d) = 1.0
 yi(t): timing yield of instruction i at time t
 ci: minimum latency of instruction i in the EX stage
 T: target clock period
 d: delayed setup time of the shadow latch

 All BIs must hold the Const.
 CIs are pruned by the Const.
 CIs are also pruned by an area constraint

24

Outlines

 Background
 Previous works

 Variation-aware ISA (VISA) synthesis
 Razor architecture
 Our architecture (HW-side approach)
 SSTA-based CI selection (SW-side approach)

 Experiments
 Conclusions

25

Experimental setup
 Benchmarks: adpcm, aes, chenidct, gsm, and sha,

and wavelet
 Target device: 90nm technology

1. T0 : yi(ciT0) = 1.0 for all BIs and CIs
2. T1 : yi(ciT1) = 1.0 for all BIs
3. T2 : yi(ciT2) < 1.0 & yi(ciT2+d) = 1.0 for some BIs

 Simulator: SimpleScalar
 MIPS (PISA)

 Comparative methods
1. A deterministic worst-case method (DW): only for T0
2. An existing SSTA-based method (ES) [Kamal'12]:

an extra cycle (stall) is always given to CIs with less-
than-1.0 timing yield – only for T1

3. Our proposed method (VISA): compensation by both
HW and SW – for T1 and T2

All performed greedily

26

Experimental results: speedup

 DM
 Not very large speedup
 Similarly with DM, deterministic approaches

quickly face the clock wall

27

adpcm aes chenidct

gsm sha wavelet

x-axis: Area introduced for CIs (#x ALU's area)
y-axis: Execution time improvement

Experimental results: speedup

 ES
 Larger speedup than DM, but still pessimistic in that

ES always gives a stall for CIs with less-than-1.0
timing yield

 For sha with 3x and 6x, even less speedup than DM

28

adpcm aes chenidct

gsm sha wavelet

x-axis: Area introduced for CIs (#x ALU's area)
y-axis: Execution time improvement

Experimental results: stalls

Method adpcm aes chenidct gsm sha wavelet
ES (T1) 2/2 2/2 18/18 7/7 1/1 3/3

VISA(T1) 0/70 0/112 6/78 4/95 0/17 1/22
VISA(T2) 497/875 618/1155 417/633 547/907 390/689 366/655

29

 ES
 100% of CIs with less-than-1.0 timing yield

always take a stall for T1
 VISA

 Up to 8% of such CIs may take a stall for T1
 Effectively remove stalls

 Can select more effective CIs by considering
application features

No. of instr. with a stall / No. of instr. with less-than-1.0 timing yield

Experimental results: speedup

 VISA
 More speedup than ES for T1
 Stall removal & effective CI selection

 Outperform DM and ES by up to 61.3% and
13.0%, respectively

30

adpcm aes chenidct

gsm sha wavelet

x-axis: Area introduced for CIs (#x ALU's area)
y-axis: Execution time improvement

Experimental results: speedup

 VISA
 More effective for more aggressive clocking
 Outperform DM and ES by up to 78.0% and

49.4%, respectively, for T2

31

adpcm aes chenidct

gsm sha wavelet

x-axis: Area introduced for CIs (#x ALU's area)
y-axis: Execution time improvement

Conclusion

 VISA: novel Variation-aware ISA synthesis
 Make effective use of process variation

comprehensively from both HW and SW
HW: Dynamic fault detection & correction with

minimum performance degradation
 SW: SSTA-based CI selection considering

application features
 Substantially improves performance compared

with existing methods
More effective for more aggressive clocking
 Up to 78.0% and 49.4% performance improvement

over two existing approaches

32

