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Instruction-set architecture (ISA) synthesis

 Embedded processors are widely used in 
various applications
 ISA synthesis: application-specific extension
 Efficient speedup with less cost (area, power, etc.)

 Custom instruction (CI) selection
 Critical computation: CIs  Custom accelerator (CA)
 The others: basic instructions (BIs)  ALU
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 A lot of challenging issues of CMOS scaling
 Cannot expect the frequency scaling 

 Process variation
 Propagation delay varies by environments
 Conventionally, deterministic 

worst-case approach
 Include extremely rare cases 

– pessimistic!
 Stochastic approach 
 E.g., Statistical Static Timing 

Analysis (SSTA)

Clock frequency
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Previous works (1)

 SSTA-based ISA synthesis works 
 [Kamal'11]: CI selection with minimum timing 

yield degradation
 Timing yield: possibility to complete operations for a 

given target clock 
 Timing yield degradation: may be intolerable for some 

applications
 [Kamal'12]: Maximum speedup with no timing 

yield degradation 
 An extra cycle to CIs with less-than-1.0 timing yield     
 Static approach only: extra cycles even when no 

timing faults occur – pessimistic!
 Timing violation by BIs are not considered
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Previous works (2)

 Variation-tolerable works in other fields
 Architectures: Razor [Ernst'03], etc. 
Detect and correct timing faults dynamically

 High-level synthesis: SSTA-based works 
([Cong'09], etc.)
 Use Razor-flipflops for aggressive clocking 

without timing yield degradation

 HW approach only - very costly!
 Comprehensive approach from both HW/SW

viewpoints is necessary
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VISA synthesis

 VISA: Variation-aware ISA synthesis
 Performance improvement by making effective 

use of process variation on both HW and SW
HW: Dynamic fault detection & correction with 

minimum performance degradation for aggressive 
clocking (based on Razor)

 SW: SSTA-based CI selection effectively by 
exploiting application features

 Handle timing violation of both BIs & CIs
 Applicable to any processors which have at 

least a mechanism of dynamic timing fault 
detection
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Razor processor architecture (1)

 Razor flipflop: Main flipflop + shadow 
latch (delayed clock)
 Fault detection: compares the results
 Fault correction: simply copies the correct 

result to the main flipflop during 1-cycle stall
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Razor processor architecture (2)
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Razor processor architecture (2)

stall stall stall NEW stall

The correct 
result of MULT 
is provided to 
the MEM stage
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dependency
from & share 
no arithmetic 
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Razor processor architecture (2)
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Our architecture model
 Removable stalls:

If instructions in the EX and ID stages have
1. No temporal dependency (data dependency)
 Judge from forwarding signals

2. No physical dependency (resource sharing in EX)
 Judge from control signals to ALU/custom accelerators
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Not restricted 
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CI selection

 SSTA + application features 
 Speedup effects of individual instances of CIs 
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CI (NEW)
2 instances

Speedup = 10 cycles/exec.
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…
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
…
ADDI R4 R4 8
NEW R6 R4 R2
AND R4 R4 R6
…

NEW1: 
8 iterations

NEW2: 
20 iterations

Benefit by NEW
= average speedup by NEW1

+ average speedup by NEW2

= {0.9x10 + 0.1x(10-0)}x8
+ {0.9x10 + 0.1x(10-1)}x20
=80 + 198
=278

Need a stall

Penalty (stall)



CI selection: constraint

 Only CIs which always finish by the setup 
time of the shadow latch are selectable
 Const.: yi(ciT+d) = 1.0
 yi(t): timing yield of instruction i at time t
 ci: minimum latency of instruction i in the EX stage
 T: target clock period
 d: delayed setup time of the shadow latch

 All BIs must hold the Const.
 CIs are pruned by the Const.
 CIs are also pruned by an area constraint
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Experimental setup
 Benchmarks: adpcm, aes, chenidct, gsm, and sha, 

and wavelet
 Target device: 90nm technology

1. T0 : yi(ciT0) = 1.0 for all BIs and CIs
2. T1 : yi(ciT1) = 1.0 for all BIs
3. T2 : yi(ciT2) < 1.0 & yi(ciT2+d) = 1.0 for some BIs

 Simulator: SimpleScalar
 MIPS (PISA)

 Comparative methods
1. A deterministic worst-case method (DW): only for T0
2. An existing SSTA-based method (ES) [Kamal'12]: 

an extra cycle (stall) is always given to CIs with less-
than-1.0 timing yield – only for T1

3. Our proposed method (VISA): compensation by both 
HW and SW – for T1 and T2

All performed greedily
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Experimental results: speedup

 DM
 Not very large speedup
 Similarly with DM, deterministic approaches 

quickly face the clock wall
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Experimental results: speedup

 ES
 Larger speedup than DM, but still pessimistic in that 

ES always gives a stall for CIs with less-than-1.0 
timing yield

 For sha with 3x and 6x, even less speedup than DM
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Experimental results: stalls

Method adpcm aes chenidct gsm sha wavelet
ES (T1) 2/2 2/2 18/18 7/7 1/1 3/3

VISA(T1) 0/70 0/112 6/78 4/95 0/17 1/22
VISA(T2) 497/875 618/1155 417/633 547/907 390/689 366/655
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 ES
 100% of CIs with less-than-1.0 timing yield 

always take a stall for T1
 VISA

 Up to 8% of such CIs may take a stall for T1 
 Effectively remove stalls

 Can select more effective CIs by considering 
application features

No. of instr. with a stall / No. of instr. with less-than-1.0 timing yield



Experimental results: speedup

 VISA
 More speedup than ES for T1
 Stall removal & effective CI selection

 Outperform DM and ES by up to 61.3% and 
13.0%, respectively
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Experimental results: speedup

 VISA
 More effective for more aggressive clocking
 Outperform DM and ES by up to 78.0% and 

49.4%, respectively, for T2
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Conclusion

 VISA: novel Variation-aware ISA synthesis
 Make effective use of process variation 

comprehensively from both HW and SW
HW: Dynamic fault detection & correction with 

minimum performance degradation
 SW: SSTA-based CI selection considering 

application features
 Substantially improves performance compared 

with existing methods
More effective for more aggressive clocking
 Up to 78.0% and 49.4% performance improvement 

over two existing approaches
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