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SRAM DRAM 1:,?;::? : STT-RAM : PCRAM R-RAM MRAM
[] [
Data Retention Y : Y : Y Y Y
Memory Cell Factor (F2) 2-5 : 4-20 : 6-12 - 16-40
Read Time (ns) 50 : 2-20 : 20-50 <50 3-20
]
Write /Erase Time (ns) 20 I 50-120 <100 3-20
|
Number of Rewrites 1015 I 10%° 1015 1015
Power Consumption — | Med/
Read/Write Ly : ok o High
. |
Power Consumption —
Other than R/W None : None None None
i

- Spin-Transfer Torque RAM(STT-RAM), a promising candidate
for future universal memory technologies.

- Combing the speed of SRAM, the density of DRAM, and the non-
volatility of Flash.

Reference: ITRS 2009 2/23/2013
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STT-RAM basics
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Statistical design challenges (1)

0 More prominent statistical factors under scaled technology
1 CMOS+Device process variations = Persistent errors
2 Probabilistic MTJ devices = Non-persistent errors

0 Expanded design space: read/write reliability/retention time/endurance.
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Statistical design challenges (2)

O For system architects,

Array-level reliability enhancement techniques, Error Correction Code
(ECC)/Red. to relax the robustness requirement of single cell, like transistor
size/cell failure rate (Huge exponential computation)

Q For device/circuit designers,

Cell-level repair techniques, like size up the transistor size to tolerate the
process variations/thermal fluctuations, to lower the cost of ECC/Red
(Expensive Monte-Carlo simulations +magnetic-CMOS models)

Bottom-up design method is hardly integrated into system design.
Lﬁ_— P N

—— Yield- Traditional bottom-up

— driven Opft - design method incurs
. ,_p ®  costly iterations, even

N the cell-level reliability

I Power/Area/Endurance, estimation is too costly
Optimization, etc

Iterations
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Overview of Loadsa

Performance Optimization |2?§tryNAzm TOp'dOWIl ﬂOW:
v MAP1/MAP2: Generic
| Pl Redundancy Budget /
Increased Redundancy mapping for ECC/Red

cell failure rate.

Increased ECC | Semi-analytical yle mapping mo

t=t+1 ¢W2
A

N, ZNRC +1 | Semi-analytical ylelmo from array y1€1d to
—> ECC Bﬁdget Col/Row yield, then to
del

| Initial Cell Conflguratlon Target Write
Pulse mput
I CMOS/MTJ
STT-RAM Cell Failure Probabnln‘_v medel-g ariation input
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Single Cell Evaluaton? ——

Y

* _ Performance
| Constructedfeﬂgn Space

Performance Calculation

est Candidates for Performance Opft.
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Generic yield mapping model for
ECC/Red.

O Unaffordable computation cost of MAP1/MAP2 , especially the
exponential computation

1 Array yield Y, ., to column/row failure rate P. under given Red.
2 Translation from P to cell failure probability P, under selected
ECC Schemes.

3 Map1i/Map2 are switchable, generic expression (n;,k,t), n,=f(k,t),
Take ECC as example, then extend to a special case of ECC
Redundancy n; = f(k,t) = k +t.

t=1:Y =(1— P)™ +niPi(1— P)™

t=2:Y =(1—P2)" +naPa(l — Pp)"2""
_|_ REE?’?—EE_IJPEE[:]_ . szﬁz—z

t

t=3:Y =5 CL P(1—P)"* ",

i—0
) t  _ mnglng—1)---{mg—t41)

g 1.2...¢ 2/23/2013
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Generic yield mapping model for
ECC/Red.

O Low cost Heuristic direct Model deduction (ECC example)
1 Mathematic deduction based on the P, without ECC
Y =(1-Py)F
_ ztj CL P (1—P)™ " Ytel, tmax]

2 Approximated Heuristic expression deduction (t=1,2, ECC)

k(k—1) . — P, = a, PY? Ps.
(=Pt = 1-kpp+ =D p t=1 1=k 2k
. 1/2
k(k—1) (k—2) B ok 1
o a1 P":? +0 (F'jl) o= ny (n1 —1) ' 1,2 = ga'%,l (n1 —2)
‘ (1 — 1)
i pigg_ pyni—i _ ¢ _ in1 — 2
Z Oy PI(1 = P17 =1 2 Fi t=2 Py = a21P,"" + a2 P
Y 6k 13 3
R 1) (n —2)P3+0 (P* - pg = 22 72,2
N (m 31)”‘ (m ~1) (1 ~2) P} + 0 (P) 21 (ng (n2 — 1) (n2 —2}) 22 PR
Ye+1) Yt +1)
Pt = ﬂ-t!]_PD + G-t,?.Pu + -+ &t,t+1PD 2/23/2013
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Generic yield mapping model for
ECC/Red.

O High accurate Heuristic logarithm Model deduction
Proposed for the reduced accuracy of direct mapping model if P,
is high (i.e.>1e-2), because of the inaccuracy of Taylor expansion

1 Approximated Heuristic expression deduction (t=1, ECC)
”’In” denotes natural logarithm function

t=1 klll(l —P{}} =
m-Y(-P)+h(l+(m-1)P) @1 = bi1zo + b1
—k (EIG e270 ) R~
—|_ 2 5}1,1%1{'2,51:2E;1H (Q—k)
ﬁl{nl—l)ele _|_ ﬁl[ﬁl—lj(ﬂl—zj ES:]:]_ 2 (?11 — ].) i

2 3
Heuristic Linear relationship £t = b 1T0 + bt 2.

2/23/2013
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Validation-Generic yield mapping
model for ECC

0 Heuristic fitting/analytical results agree well with the golden direct
computed samples in both Direct model and logarithm model.
4 Logarithm model is more accurate in high error rate zone.
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Simulated results comparison of logarithm mapping model
under different ECCs (Hamming, BCH1, BCH2, ngls?,z 0l§§H4).

Simulated results comparison of direct mapping Model under
different ECCs (Hamming, BCH1, BCH2, BCH3, BCH4).
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Validation-Generic yield mapping
model for Red.

0 Redundancy is a special case from ECC, can be seamlessly integrated in
previous ECC yield mapping model n: = f(k, i) =k +t.

d Results of Generic model for Redundancy have similar accuracy
as ECC’s.
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Failure-probability model for STT-
RAM Cell

O Translation from cell failure rate Py to cell design parameters
Require an analytical model to characterize both process variations
and probabilistic behavior of MTJ device for statistical design.

0 Fast (significantly reduce the traditional expensive hybrid spice &
macro-magnetic simulation)

d Scalable (independent of technology)

d Variation-Aware ( statistical analysis for expanded design space
exploration)

0 Expendable (more design parameters and variability inputs)

d Smart enough for integration and multi-level optimization

2/23/2013
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Failure-probability model for STT-
RAM Cell

O Semi-analytical model deduction
A. Statistical Characterization of MTJ Switching Current (sensitivity
analysis+ dual exponential current model for process variations)
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B. STT-RAM Cell Failure under Thermal Fluctuatlon
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Validation-Failure-probability
model for STT-RAM

O Simulation settings at T=300K

Parameters Mean Std.
Channel width W =90 ~ 1800nm | ow = 5%L
Channel length L = 45nm o = 5%L

Threshold voltage Vin = 0.466V Calucaltion
Mego thickness T =2.2nm or = 2%T
MT]J] surface area A =45 % 90nm* Calculation
Resistance high Ry = 200012 Calculation
Resistance low R; = 100012 Calculation

2/23/2013
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Validation-Failure-probability
model for STT-RAM

U Accurate translation from Pp to cell design parameters at both
directions under both process variations and thermal fluctuations.
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Case study-Loadsa

O Mathematical Model formulation for performance opt.

A. F(X)is the target performance need to be optimized, such as
power/area etc, we need to obtain the best combination of transistor
size, redundancy/ECC configurations under yield/write
pulse/variations(both process + thermal), the optimized value X.

Uopt = min (F (X))

Where X = [W  Nge 1],

Subject to:

Yield Constraint: Y,con < Yoon for Ty < T0 cons
Redundancy budget: Nrc € [1, Nrc_con],

ECC budget: t € [1, tcon]

Variations: 0 = [OW_con, OL_con,OV_th, TA_lon: Or_con)

For all X,. X c IXI]’]ill:uXII]él}:]'

2/23/2013



Case study-Loadsa

Department of Electrical & Computer Engineering

O Case study: Yield-driven area optimization.

Nbit=256bit, Ncol=1024, Ny; ..,=30. Hamming code (265, 256, 1) and
four BCH codes -BCH1 (274, 256, 2), BCH2 (283, 256, 3), BCH3 (292,
256, 4) and BCH4 (301, 256, 5), with the error correction capability t

Area for different ECCs (F2)

from1to 5.
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—— Area Cost for BCH1 at Ymem:0.95 for TW:15ns -
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—6— Area Cost for BCH3 at Y| =0.95at T =15ns
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5 10 15 20 25 30
Redundancy Numbers Nrc

Simulated results of area optimization for the budget ECCs,
Redundant numbers NRC under Ymem = 95% for Tw = 15ns.

. W . . . .
.ffl.;.pt = Min (3 (T + l) I:ij"u-',r_u,-“ + ﬂ'EQCJ (f\',:,:.g + N HC})

1 Benefit of increasing the strength
of ECC for area optimization
monotonically decreases when the
ECC scheme changes from Hamming

| code to BCH1 — BCH4 with any

simulated redundancy
configurations.

minimum area is acheived at BCH3
with 18 redundant columns.z2/23/2013



Outline Revisit

Introduction
— STT-RAM basics
— Statistical design challenges
* Overview of top-down statistical method-Loadsa
« Hierarchical semi-analytical model of Loadsa
— Generic yield mapping model for ECC/Red.
— Statistical failure-probability model for STT-RAM cell
« Case study of Loadsa: Yield-Driven Array Opt.
« Conclusions

2/23/2013



,-:: " University of Pittsbur gh Department of Electrical & Computer Engineering

Conclusion

We developed a fast and accuracy generic semi-analytical yield
mapping algorithm to hierarchically map the required memory
array yield to the cell-level failure probability under certain ECC
and redundancy configurations.

We proposed using the sensitivity analysis technique and the dual-
exponential model of MTJ switching to simplify the derivation of
PF from the cell designs by considering both process variations
and thermal fluctuations. The accuracy and cost of semi-analytical
STT-RAM cell model are demonstrated.

We demonstrated the possibility of developing a top-down
statistical design method for STT-RAM and the efficiency of our
proposed Loadsa technique in our experiment results and case
studies.

2/23/2013
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