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High-Level Synthesis

= Automatic generation of hardware |
from algorithm descriptions

» RTL design time high for complex L
designs

= Different input languages
» Extensions to C/C++
(SystemC, ImpulseC)

* Functional (Haskel), GPGPU (CUDA),
Graphical (LabView)




High-Level Synthesis Tools

= Facilitate design space exploration
- Compiler directives or language features
- Automate (partially) selection of design parameters

= Challenge — extracting parallelism

» Require restructuring or reimplementation of code In
HLS specific manner

= Data-parallel input languages provide inherent
advantage



Parallel Computing & GPU Languages

= Shift towards parallel computing & heterogeneous

= CUDA programming model (NVIDIA)
* Minimal extensions to C/C++

= CUDA advantages for HLS

- Easier analysis of
application parallelism

* Exploration of parallelism
granularity options




Synthesis of CUDA Kernel
* FCUDA - CUDA to FPGA [SASP’09], [FCCM ‘11]
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= Automates design space exploration of single
CUDA kernel

« Match GPU performance with significantly less power

= Currently supports only single kernel synthesis



Synthesis of Multiple CUDA Kernels

= Possible to create single enclosing wrapper kernel
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= Single Enclosing Wrapper Kernel is not Ideal
« Must fully-buffer all sub-kernel communications on-chip
* Must use the same thread organization for sub-kernels
+ Forces all sub-kernels to be CUDA device-only functions



Objective

= Map multiple communicating CUDA kernels onto
FPGA
+ Allow fine-grained communication
- Enable data streaming
- Handle different thread organizations

= Key Contributions to synthesize communicating CUDA
kernels to RTL

« Manual step-by-step procedure
- |dentify key challenges in automation
- Case study of stereo-matching algorithm



Multi-Kernel Synthesis - Steps

* Individual Kernel Synthesis
= Communication Buffer Generation
= Analytical Design Space Exploration

= Implementation and Verification



Individual Kernel Synthesis

= Kernel extraction and FCUDA flow

= |nitial solution of cores to be minimal In area
« Perform joint design space exploration kernels later!

= Measure resource usage and latency




Communication Buffers

= Generate control flow graph (CFG) for kernels
» ASAP scheduling to determine execution critical path

= Buffers between each pair of communicating
kernels

!



Communication Buffers

= Sjze of buffers?
* Full-size buffers infeasible

= Data access pattern analysis
* Initial buffer size = minimal data processing quanta
 Bigger sizes explored in analytical model

= Growth rate of communication buffer

* Include overlap data size for correctness

* Boundary data for algorithms with windowed
computations



Buffering Schemes
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Analytical Design Exploration Model



Analytical Design Exploration
nQuanta = 8 =» Max cores = (4,2,4)
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Analytical Design Exploration
nQuanta = 8 =» Max cores = (4,2,4)
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Analytical Design Exploration

nQuanta =8 => Max cores = (4,2,4)
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Analytical Design Exploration
nQuanta = 8 =» Max cores = (4,2,4)
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Analytical Design Exploration
nQuanta=16 =  Max cores = (8,4,8)
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Analytical Design Exploration
nQuanta=16 =  Max cores = (8,4,8)
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Implementation and Verification

= Core allocations from analytical model
 AutoPilot-C pragmas for suggested parallelism

= Communication buffers and kernel-level
parallelism

= SystemC simulation

* Vivado Synthesis



Stereo Matching

= Two spatially separated color cameras

= Distance in pixels between the same object in
the images infers depth

= Complex algorithms to match pixels




Case Study — Stereo Matcher
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Design Space for Dual-Buffer Flow
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Design Space for Dual-Buffer Flow

mM6x96(DB) X 12x96(DB) @18x96(DB) =-12X192(DB) ¢ 18X192(DB)
A12x384(DB) % 18x384(DB) +24x384(DB) —36x384(DB) m48x384(DB)

X 72x384(DB) ©96x384(DB) -144x384(DB)

1000
A
- [ |
S 100
§ n
~ [ |
>
e O
= n
©
S 10 a
o ]
(@]
1

l T T T T T
0 05 1 1.5 2 25

Sum of Normalized Resource Use



Design Space for Dual-Buffer Flow
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Design Space for Dual-Buffer Flow
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Design Space for Dual-Buffer Flow
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Design Space for Dual and Single Buffer
Flow
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Design Space for Dual and Single Buffer
Flow
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Performance—Power Comparison

HLS of sequential code achieved

speedup of 6.9x over software 1.2
[FPT11] 17

0.8 -
HLS of CUDA parallel code 0.6 - = GPU
achieved speedup of >50x over 0.4 - = FPGA
sequential software ** 02 -

O i

Greater exposed parallelism Normalized Normalized Energy

: . Latenc
provides synthesis tool greater 4

opportunity for optimization



Challenges in Automation — Single Kernel

= Single kernel synthesis
» Critical: Replicating the initial solution for concurrency

= Multi-kernel synthesis



Challenges in Automation — Single Kernel

= Optimize thread index computations

+ Solution: Improved analytical technigues in FCUDA to
optimize index computations

= Floating-point to fixed-point computations

« Solution: Automatic transformation with functional
verification of transform

= |nefficient implementations of difficult operations

 Solution: Automatic instantiation of library elements
for common but challenging operations



Challenges in Automation — Multiple Kernel

= Selection of single-core implementation

« Solution: Complex value function, knowledge of resource
criticality, and iteration of entire design flow

= Automatic buffer-generation and insertion

+ Solution: Complex memory access pattern analysis and
transformations (See upcoming FPGA 13 paper)

= Performance estimation within synthesis process

 Solution: Improved analytical model for loop bounds, trip
counts, resource estimates

= Sub-kernel optimizations to match
pipeline stage latencies

 Solution: Improved ability to combine
or split pipeline stages




Conclusion

Multi-kernel CUDA synthesis is important

Manual process for mapping multiple dependent
CUDA kernels to FPGA

Performance parity with GPU consuming 16x
less energy than GPU

- Benefit of data-parallel input language for HLS

Fully automating multi-kernel synthesis is
challenging
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