TECHNOLOGICAL ADSC
UNIVERSITY ~

High-Level Synthesis of Multiple
Dependent CUDA Kernels for FPGA

Swathi Gurumani?, Hisham Cholakkai?, Yun Liang?,
Kyle Rupnow?!?, Deming Chen?

INanyang Technological University
2Advanced Digital Sciences Center, lllinois at Singapore
3Peking University
4Univ. of lllinois Urbana-Champaign

I




High-Level Synthesis

= Automatic generation of hardware |
from algorithm descriptions

» RTL design time high for complex L
designs

= Different input languages
» Extensions to C/C++
(SystemC, ImpulseC)

* Functional (Haskel), GPGPU (CUDA),
Graphical (LabView)




High-Level Synthesis Tools

= Facilitate design space exploration
- Compiler directives or language features
- Automate (partially) selection of design parameters

= Challenge — extracting parallelism

» Require restructuring or reimplementation of code In
HLS specific manner

= Data-parallel input languages provide inherent
advantage



Parallel Computing & GPU Languages

= Shift towards parallel computing & heterogeneous

= CUDA programming model (NVIDIA)
* Minimal extensions to C/C++

= CUDA advantages for HLS

- Easier analysis of
application parallelism

* Exploration of parallelism
granularity options




Synthesis of CUDA Kernel
* FCUDA - CUDA to FPGA [SASP’09], [FCCM ‘11]

Annotated
CUDA

CUDA

Code FCUDA

FPGA
Bitfile

AutoPilot

Annotation C Code

SYUUESE

= Automates design space exploration of single
CUDA kernel

« Match GPU performance with significantly less power

= Currently supports only single kernel synthesis



Synthesis of Multiple CUDA Kernels

= Possible to create single enclosing wrapper kernel
K1

—
N S )

——

= Single Enclosing Wrapper Kernel is not Ideal
« Must fully-buffer all sub-kernel communications on-chip
* Must use the same thread organization for sub-kernels
+ Forces all sub-kernels to be CUDA device-only functions



Objective

= Map multiple communicating CUDA kernels onto
FPGA
+ Allow fine-grained communication
- Enable data streaming
- Handle different thread organizations

= Key Contributions to synthesize communicating CUDA
kernels to RTL

« Manual step-by-step procedure
- |dentify key challenges in automation
- Case study of stereo-matching algorithm



Multi-Kernel Synthesis - Steps

* Individual Kernel Synthesis
= Communication Buffer Generation
= Analytical Design Space Exploration

= Implementation and Verification



Individual Kernel Synthesis

= Kernel extraction and FCUDA flow

= |nitial solution of cores to be minimal In area
« Perform joint design space exploration kernels later!

= Measure resource usage and latency




Communication Buffers

= Generate control flow graph (CFG) for kernels
» ASAP scheduling to determine execution critical path

= Buffers between each pair of communicating
kernels

!



Communication Buffers

= Sjze of buffers?
* Full-size buffers infeasible

= Data access pattern analysis
* Initial buffer size = minimal data processing quanta
 Bigger sizes explored in analytical model

= Growth rate of communication buffer

* Include overlap data size for correctness

* Boundary data for algorithms with windowed
computations



Buffering Schemes

i
v

v
Kernel A Kernel A
s N
[Buffer O| | Buffer 1
~ Y,
A \“~\$/ A
Kernel B AlB C) Kernel B B
Time

v

Kernel C

i
v

a. Single-Buffer Flow

Time / \~\\
S

\
[Buffer% [Buffer 1
J

-
~
~\

Kernel C

v
b. Dual-Buffer Flow




Analytical Design Exploration Model



Analytical Design Exploration
nQuanta = 8 =» Max cores = (4,2,4)

A K1

Time




Analytical Design Exploration
nQuanta = 8 =» Max cores = (4,2,4)

il

] [ ]
2 B¢l 2 B¢
A K2 | K2
s i) =
6 | &
6 | &

Time

v



Analytical Design Exploration

nQuanta =8 => Max cores = (4,2,4)

’4 A K2 | K2

Ll K3 | K3

Time




Analytical Design Exploration
nQuanta = 8 =» Max cores = (4,2,4)

K1
8 ‘4 ‘4 ko] %2 ‘OnIyZCoresof
- K2 is possible!
6 L&
6 P LE
v

Time

Ll K3 | K3




Analytical Design Exploration
nQuanta=16 =  Max cores = (8,4,8)

A K1 2 mei 2 9!

Increase

+ EARE + AR
sl I ) - nQuanta

Ll K3 | K3

Time

6 L&




Analytical Design Exploration
nQuanta=16 =  Max cores = (8,4,8)

Time




Implementation and Verification

= Core allocations from analytical model
 AutoPilot-C pragmas for suggested parallelism

= Communication buffers and kernel-level
parallelism

= SystemC simulation

* Vivado Synthesis



Stereo Matching

= Two spatially separated color cameras

= Distance in pixels between the same object in
the images infers depth

= Complex algorithms to match pixels




Case Study — Stereo Matcher

Census Census
Left Image> Transform Transform  €— Right |mage
‘1, Kernel Kernel ¢
RGB to Lab Left Right RGB to Lab
Conversion GridBuilding GridBuilding Conversion
Kernel Kernel Kernel Kernel
\ Matching Matching /
Kernel Kernel

Cross
Correction
Kernel

P

IS

Pre Filtering
Kernel

Pre Filtering
Kernel

Left Depth Map

v

Right Depth Map




Design Space for Dual-Buffer Flow

m6x96(DB) X 12x96(DB) ®18x96(DB) -12X192(DB) ¢ 18X192(DB)
A12x384(DB) % 18x384(DB) +24x384(DB) —36x384(DB) m48x384(DB)
72x384(DB) ©96x384(DB) - 144x384(DB)

1000

100

10

Log Latency (Mcycles)

1 T T T
0 0.5 1 15 2 2.5

Sum of Normalized Resource Use



Design Space for Dual-Buffer Flow

mM6x96(DB) X 12x96(DB) @18x96(DB) =-12X192(DB) ¢ 18X192(DB)
A12x384(DB) % 18x384(DB) +24x384(DB) —36x384(DB) m48x384(DB)

X 72x384(DB) ©96x384(DB) -144x384(DB)

1000
A
- [ |
S 100
§ n
~ [ |
>
e O
= n
©
S 10 a
o ]
(@]
1

l T T T T T
0 05 1 1.5 2 25

Sum of Normalized Resource Use



Design Space for Dual-Buffer Flow

m6x96(DB) X 12x96(DB) ®18x96(DB) -12X192(DB) ¢ 18X192(DB)
A12x384(DB) % 18x384(DB) +24x384(DB) —36x384(DB) m48x384(DB)
X 72x384(DB) ©96x384(DB) -144x384(DB)

1000

E)
= X

S 100

§ x

< X

8 X

5 " .

©

1 10 % .‘

=3 X

- X

1 T T T T T
0 0.5 1 15 2 25

Sum of Normalized Resource Use



Design Space for Dual-Buffer Flow

Log Latency (Mcycles)

1000

100

10

mM6x96(DB) X 12x96(DB) @18x96(DB) =-12X192(DB) ¢ 18X192(DB)
A12x384(DB) % 18x384(DB) +24x384(DB) —36x384(DB) m48x384(DB)
% 72x384(DB) ©96x384(DB) - 144x384(DB)

-“X_F ==. u AX
"‘.:AX;J’ - .I .
X x+ T _ By XX %
A e |
o N N
& y-hl- - - ‘_ e
et ¥ - O %
R X e =
v
05 1 15 2 25

Sum of Normalized Resource Use



Design Space for Dual-Buffer Flow

mM6x96(DB) X 12x96(DB) @18x96(DB) =-12X192(DB) ¢ 18X192(DB)
A12x384(DB) % 18x384(DB) +24x384(DB) —36x384(DB) m48x384(DB)

X 72x384(DB) ©96x384(DB) -144x384(DB)

1000
X
,U? >K+ - n
Q ol X
&) _ [ |
(>.)\ 100 >K+ - /\X
\2./ -“X"‘ - = X
> x#h X7 - = X
= WO ST DT
% >K)K-l_"' N = ‘ &
8 10 ” &*&éﬂ%&* = 0 S S X
T i == = .
o - + - B
S g8+ % »t =
1
®~ Selected solution
1 T T T T T
0 05 1 15 2 2.5

Sum of Normalized Resource Use



Design Space for Dual and Single Buffer
Flow

Log Latency (MCycles)

1000

100

10

*
*
o *° ’ ¢
® *
o o 0. . °
* .
- ** ’, ‘0 ” * ‘0,
’:“00 o © o *, L
Pl SRR s 3 s X SB
’.0 ‘ ‘ $
,00”‘3 R $ N IR *DB
“_‘_‘ “‘ : s ¢ " Y s
‘ *® *® o ‘ ‘
05 1 15 2 25 3

Sum of Normalized Resource Use



Design Space for Dual and Single Buffer
Flow

1000 >
% X
X 2
X
X X ex ¢
X @ 2 J
ox L X X
Q(’X X Xx * x° ¢
» 2 ® 2
% 100 o x* L 4 y‘x,
>
O
=3
oy
c X SB
Q
ilcs ¢ DB
2 10 2
B
1 T T T T T
0 0.5 1 1.5 2 25 3

Sum of Normalized Resource Use



Performance—Power Comparison

HLS of sequential code achieved

speedup of 6.9x over software 1.2
[FPT11] 17

0.8 -
HLS of CUDA parallel code 0.6 - = GPU
achieved speedup of >50x over 0.4 - = FPGA
sequential software ** 02 -

O i

Greater exposed parallelism Normalized Normalized Energy

: . Latenc
provides synthesis tool greater 4

opportunity for optimization



Challenges in Automation — Single Kernel

= Single kernel synthesis
» Critical: Replicating the initial solution for concurrency

= Multi-kernel synthesis



Challenges in Automation — Single Kernel

= Optimize thread index computations

+ Solution: Improved analytical technigues in FCUDA to
optimize index computations

= Floating-point to fixed-point computations

« Solution: Automatic transformation with functional
verification of transform

= |nefficient implementations of difficult operations

 Solution: Automatic instantiation of library elements
for common but challenging operations



Challenges in Automation — Multiple Kernel

= Selection of single-core implementation

« Solution: Complex value function, knowledge of resource
criticality, and iteration of entire design flow

= Automatic buffer-generation and insertion

+ Solution: Complex memory access pattern analysis and
transformations (See upcoming FPGA 13 paper)

= Performance estimation within synthesis process

 Solution: Improved analytical model for loop bounds, trip
counts, resource estimates

= Sub-kernel optimizations to match
pipeline stage latencies

 Solution: Improved ability to combine
or split pipeline stages




Conclusion

Multi-kernel CUDA synthesis is important

Manual process for mapping multiple dependent
CUDA kernels to FPGA

Performance parity with GPU consuming 16x
less energy than GPU

- Benefit of data-parallel input language for HLS

Fully automating multi-kernel synthesis is
challenging



Acknowledgement

= A*STAR HSS Funding
= Peking University
= University of lllinois at Urbana-Champaign

= ADSCs Lab Colleagues

» Hongbin Zheng
 Muhammad Teguh Satria



