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Introduction – GPGPU 

 General Purpose Graphic Processing Unit 

An accelerator for  general computing 

Numerous computing cores (> 512 cores/chip) 

 Throughput-oriented 

 Techniques to alleviate memory bottleneck 

Memory Coalescing 

On-chip Shared Cache 
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Introduction – Alleviate Memory 

Bottleneck 

 Memory Coalescing 

Combine several narrow accesses into a single wide one 

Effective and widely used in regular applications 

Fast Fourier Transform (FFT) and Matrix Multiplications 

 On-chip Shared Cache 

Shared among several computing cores 

Automatically exploit data reuse  

 
 However, in Irregular Applications 

 Lack of coordinated memory access (Non-Coalescing) 

Numerous threads with limited cache capacity (Cache 

Contention) 
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Introduction – Cache Contention 
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 Cache Contention 

Happen when the cache capacity is insufficient for all the 

concurrent threads 

Example : 

Shared Cache Shared Cache 

Contention free Cache contention 

… … 

Thread   Per-thread working set  
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Introduction – Previous Studies 

 Previous studies 

Deng, et al. (ICCAD’09) 

Scratch-pad memory to enhance coalescing 

 Zhang, et al. (ASPLOS’11) 

Data and computation reordering to improve coalescing 

Kuo, et al. (ASPDAC’12) 

Thread clustering to enhance coalescing and mitigate cache 

contention 

 Without considering the Cache Capacity 

Cannot fully resolve the Cache Contention issue 
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Introduction – Contributions 

 This paper 

 Formulate a general thread scheduling problem on 

GPGPUs 

Cache Capacity Aware Thread Scheduling Problem  

Carry out a comprehensive analysis on the variants of the 

problem 

 Nvidia’s Fermi architecture is modeled as a special variant 

Propose thread scheduling algorithms for different variants 

An average of 44.7% cache misses reduction 

An average of 28.5% runtime enhancement 
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 Nvidia’s CUDA Programming Model 

Cooperative Thread Array (CTA) 

A collection of threads 

Kernel 

A collection of CTAs 

 

GPGPU Background – Programming 

Model 

int main(){ 
        /∗ serial code∗/ 
        ⋯ 
        kernel_A<<<192, 256>>>(arg0, arg1, ⋯) 
        ⋯ 
        /∗ serial code∗/ 
        ⋯ 
        kernel_B<<<256, 192>>>(arg0, arg1, ⋯) 
        ⋯ 
} 

Kernel_A 

CTA0 

Source: Nvidia, http://http://www.nvidia.com  
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 This paper 

Consider re-configuring 

the number of concurrent 

CTAs 

Need synchronizations 

GPGPU Background – GPGPU 

Architecture 

 Nvidia’s Fermi GPGPU Architecture 

Streaming Multiprocessor (SM) 

Unified L2 Cache 

GigaThread Scheduler 

Fixed number of  

concurrent CTAs 

Unified L2 Cache 

SM 

GigaThread Scheduler 

SM SM 

… 

… 

Source: Nvidia, http://http://www.nvidia.com  
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Motivational Examples – Example 1 

 Assume that 

A collection of CTAs = {A, B, C, D, E, F, G, H, I, J, K, L} 

Working set sizes = {1, 8, 3, 1, 2, 2, 1, 7, 4, 4, 2, 5} 

Cache capacity = 10 

Maximum number of concurrent CTA = 4 
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 Example 1 

Example 1 : Cache Capacity Agnostic Scheduling 

Scheduling 

Steps 

Concurrent 

CTAs 
Cache Contention Evaluation 

Step1 A, B, C, D 1 + 8 + 3 + 1 = 13 > 10 (Contention) 

Step2  E, F, G, H 2 + 2 + 1 + 7 = 12 > 10 (Contention) 

Step3 I, J, K, L 4 + 4 + 2 + 5 = 15 > 10 (Contention) 
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 Example 2 

 Too restrictive to schedule more concurrent CTAs 

 

 

 

Motivational Examples – Example 2 
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Example 2 : Cache Capacity Aware Scheduling with 

Fixed Number of Concurrent CTAs 

Scheduling 

Steps 

Concurrent 

CTAs 
Cache Contention Evaluation 

Step1 B, E 8 + 2 = 10 ≤ 10 (Contention free) 

Step2  C, H 3 + 7 = 10 ≤ 10 (Contention free) 

Step3 L, J 5 + 4 = 9 ≤ 10 (Contention free) 

Step4 F, I 2 + 2 = 6 ≤ 10 (Contention free) 

Step5 A, K 1 + 2 = 3 ≤ 10 (Contention free) 

Step6 D, G 1 + 1 = 2 ≤ 10 (Contention free) 
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 Example 3 

Should also consider the synchronization cost 

Motivational Examples – Example 3 
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Example 3 : Cache Capacity Aware Scheduling with 

Reconfigurable Number of Concurrent CTAs 

Scheduling 

Steps 

Concurrent 

CTAs 
Cache Contention Evaluation 

Step1 B, E 8 + 2 = 10 ≤ 10 (Contention free) 

Step2  C, H 3 + 7 = 10 ≤  10 (Contention free) 

Synchronize and re-configure the number of concurrent CTAs 

Step3 L, K, F, J 5 + 2 + 2 + 1 = 10 ≤ 10 (Contention free) 

Step4 J, I, D, G 4 + 4 + 1 + 1 = 10 ≤ 10 (Contention free) 

Synchronize and re-configure the number of concurrent CTAs 
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Cache Capacity Aware Thread Scheduling 

– Problem Formulation (1/4) 

 

 

 

 

 

 Input 

 𝒄𝒏 : a collection of CTAs 

𝒄𝒏 = 𝑐1, 𝑐2⋯ , 𝑐𝑛  

𝒘 𝒄𝒊  : working set size of the CTA 𝑐𝑖  

 𝒔𝒎 : a schedule of CTAs (a series of scheduling step) 

𝒔𝒎 = 𝑠1, 𝑠2⋯ , 𝑠𝑚  

Each scheduling step 𝑠𝑖  is a subset of 𝑐𝑛 

𝒄𝒐𝒏𝒄 𝒔𝒊  : concurrency of the scheduling step 𝑠𝑖  

Number of CTAs belongs to 𝑠𝑖  

 Output 
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𝒎+ 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎  : overall cost of the schedule 𝑠𝑚 

𝒎 : total number of scheduling steps 

𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎  : total synchronization cost 

 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎 = 𝒄𝒑𝒔 ×  𝒔𝒚𝒏𝒄 𝒔𝒊, 𝒔𝒊+𝟏
𝑚−1
𝑖=0  

𝒔𝒚𝒏𝒄 𝒔𝒊, 𝒔𝒊+𝟏  : necessity of synchronization 

 𝒔𝒚𝒏𝒄 𝒔𝒊, 𝒔𝒊+𝟏 =  
 0, 𝑐𝑜𝑛𝑐 𝑠𝑖 = 𝑐𝑜𝑛𝑐 𝑠𝑖+1
  1, 𝑐𝑜𝑛𝑐 𝑠𝑖 ≠ 𝑐𝑜𝑛𝑐 𝑠𝑖+1

 

𝒄𝒑𝒔 : cost per synchronization 

 𝒄𝒑𝒔 ∈ ℝ, 0 < 𝑐𝑝𝑠 ≤ 1 

Cache Capacity Aware Thread Scheduling 

– Problem Formulation (2/4) 

 Constraint (Cache Capacity) 
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 Cost Function 

 ∀𝑠𝑖:  𝑤 𝑐𝑗𝑐𝑗∈𝑠𝑖 ≤ 𝑪𝒂𝒑_𝒖𝒏𝒊𝒇𝒊𝒆𝒅_𝑳𝟐 
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Cache Capacity Aware Thread Scheduling 

– Problem Formulation (3/4) 

 

 

 

 

 

 Problem Definition  

 
Cache Capacity Aware Thread Scheduling 

Problem : Given a collection of CTAs 𝒄𝒏 with working 

set size 𝒘 𝒄𝒊 , the problem is to find a schedule 𝒔𝒎  

where the overall cost is minimized subject to cache 

capacity constraint: 

 

 

 

 

 

minimize       𝒎 +  𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎  

subject to      ∀𝑠𝑖: 𝑤 𝑐𝑗
𝑐𝑗∈𝑠𝑖

≤ 𝑪𝒂𝒑_𝒖𝒏𝒊𝒇𝒊𝒆𝒅_𝑳𝟐 

                         ∀𝑠𝑖 ≠ 𝑠𝑗: 𝑠𝑖 ∩ 𝑠𝑗 = ∅ 
                         𝑠1 ∪ 𝑠2⋯𝑠𝑚 = 𝑐

𝑛 
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Cache Capacity Aware Thread Scheduling 

– Problem Formulation (4/4) 

 

 

 

 

 

 NP-hardness  

  Lemma 1 : The Cache Capacity Aware Thread 

Scheduling Problem is NP-hard 

Proof : The NP-hard problem, Bin Packing Problem 

can be reduced to this problem 

 P ≠ NP 

No optimal algorithm in polynomial time 

Acceptable quality in polynomial time 

Approximation algorithms 
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Cache Capacity Aware Thread Scheduling 

– Fixed Concurrency (1/2) 

 

 

 

 

 

 Fixed Concurrency Constraint  

  ∀𝑠𝑖 ≠ 𝑠𝑗: 𝑐𝑜𝑛𝑐 𝑠𝑖 = 𝑐𝑜𝑛𝑠 𝑠𝑗  

Imply no synchronization cost 

Reduced to k-Cardinality Bin Packing Problem 

Given : a set of items 𝑎1, 𝑎2, ⋯ , 𝑎𝑛, each with sizes 

𝑠 𝑎𝑖  and the bin capacity 𝑐𝑎𝑝 

Result : a division of the items into to a minimum 

number of bins 

Constraints : each bin contains at most 𝑘 items and 

its aggregated size cannot exceed the capacity 𝑐𝑎𝑝 

 k-Cardinality Bin Packing Problem 
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Algorithm 1 : Thread Scheduling for Fixed Concurrency 

1    𝑘 ← maximum possible concurrency 
2    sort 𝑐𝑛 in decending order by working set size 
3    𝐫𝐞𝐩𝐞𝐚𝐭 
4            𝑐𝑎𝑝 ← 𝑤 𝑐1 + 𝑤 𝑐2 +⋯+𝑤 𝑐𝑘  

5            𝑘 ← 𝑘 − 1 
6    𝐮𝐧𝐭𝐢𝐥 𝑐𝑎𝑝 ≤ 𝐶𝑎𝑝_𝑢𝑛𝑖𝑓𝑖𝑒𝑑_𝐿2 
7    𝑐𝑎𝑝 ← 𝐶𝑎𝑝_𝑢𝑛𝑖𝑓𝑖𝑒𝑑_𝐿2 
8    𝑠𝑚 ← K− CARDINALITY−BIN−PACKING(𝑐𝑛, 𝑐𝑎𝑝, 𝑘) 
9    𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑚 

Cache Capacity Aware Thread Scheduling 

– Fixed Concurrency (2/2) 

 k-Cardinality Bin Packing Algorithms 

 Largest Memory First (LMF) and Iterated Worst-Case 

Decreasing (IWFD) 

Constant approximation ratio 
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M. R. Garey, et al., "Worst-Case Analysis of Memory Allocation Algorithms," in ACM Symp. Theory of Computing, 1972 

K. L. Krause, et al., "Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems," J. ACM, vol. 22, pp. 522-550, 1975 
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Cache Capacity Aware Thread Scheduling 

– Variable Concurrency (1/2) 

 

 

 

 

 

 Cost Function: 𝒎+ 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎  

 Trade-off between the number of scheduling steps (𝒎) 

and synchronization cost (𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎 ) 

 

 

 Lemma 2 : For any schedule 𝒔𝒎, the overall cost, 

𝒎+ 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎  is lesser or equal to 2𝒎 –  1 

 Interesting Findings 

 Lemma 3 : For any schedule 𝒔𝒎, the synchronization 

cost is minimum if the scheduling steps are sorted by 

the concurrency (𝒄𝒐𝒏𝒄(𝒔𝒊)) 
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Algorithm 2 : Thread Scheduling for Variable Concurrency 

1    𝑘 ← maximum possible concurrency 
2    𝑐𝑎𝑝 ← 𝐶𝑎𝑝_𝑢𝑛𝑖𝑓𝑖𝑒𝑑_𝐿2 
3    𝐫𝐞𝐩𝐞𝐚𝐭 
4            𝑠𝑚 ← K− CARD INALITY−BIN−PACK ING(𝑐𝑛, 𝑐𝑎𝑝, 𝑘) 
5            𝐬𝐨𝐫𝐭 𝒔𝒎 𝒃𝒚 𝒄𝒐𝒏𝒄𝒖𝒓𝒓𝒆𝒏𝒄𝒚 𝒕𝒐 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒔𝒚𝒏𝒄𝒉𝒓𝒐𝒏𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕 
6            𝑜𝑙𝑑_𝑐𝑜𝑠𝑡 ← 𝑚 + 𝑠𝑦𝑛𝑐_𝑐𝑜𝑠𝑡 𝑠𝑚  
7            𝑘 ← 𝑘 − 1 
8            𝑠𝑚

′
← K− CARD INAL ITY−BIN−PACK ING (𝑐𝑛, 𝑐𝑎𝑝, 𝑘) 

9            sort 𝑠𝑚
′
 𝑏𝑦 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

10         𝑛𝑒𝑤_𝑐𝑜𝑠𝑡 ← 𝑚 + 𝑠𝑦𝑛𝑐_𝑐𝑜𝑠𝑡 𝑠𝑚
′

 

11  𝐮𝐧𝐭𝐢𝐥 𝑛𝑒𝑤_𝑐𝑜𝑠𝑡 ≥ 𝑜𝑙𝑑_𝑐𝑜𝑠𝑡 
12  𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑚 

 Algorithm Design 

 Lemma 2 → Minimize the number of steps (𝒎)  

 Lemma 3 → Minimize sync. cost (𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕(𝒔𝒎)) 

Cache Capacity Aware Thread Scheduling 

– Variable Concurrency (2/2) 

Lemma 2 

Lemma 3 

It
e
ra

ti
v
e

 R
e
fi
n
e
m

e
n
t 
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Experimental Results – Experiment 

Setup (1/2) 

 

 

 

 

 

Fermi’s Architectural Configurations in GPGPU-Sim 

Number of SMs 15 

SM configuration 

32-wide pipeline, 32 threads/warp, 1536 threads/SM, 32768 

registers/SM, 

number of CTAs/SM (dynamic reconfigurable, default 8) 

L2 cache unified 768KB, 8-way, 64 byte/block 

DRAM 
6 GDDR5 channels, 2 chips/channel, 16 banks, 16 entries/chip, 

FR-FCFS policy 

Interconnection network single stage butterfly, 32-byte flit size 

 GPGPU-Sim (ISPASS’09) Simulation Setup 

 Thread clustering for CTA generation 

Kuo, et al. (ASPDAC’12) 

 Ocelot for working set size analysis 

Ocelot (PACT’10) 
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Experimental Results – Experiment 

Setup (2/2) 

 

 

 

 

 

Irregular Massive Parallel Applications 

Applications Fields Descriptions Sources 
Data set 

sizes 

bfs Electronic 

Design 

Automation 

(EDA) 

breadth first search 

Kuo, et al. 

2.6 MB 

sta static timing analysis 3.0 MB 

gsim gate level logic simulation 3.5 MB 

nbf Molecular 

Dynamics 

(MD) 

kernel abstracted from the GROMOS 

code 

Cosmic 

6.3MB 

moldyn 
force calculation in the CHARMM 

program 
10.2MB 

irreg Computational 

Fluid 

Dynamics 

(CFD) 

kernel of Partial Differential Equation 

solver 
6.3MB 

euler finite-difference approximations on mesh 
Chaos 

8.5MB 

unstructured fluid dynamics with unstructured mesh 10.2MB 

 Application Domains 

22 

H.-K. Kuo, et al., "Thread Affinity Mapping for Irregular Data Access on Shared Cache GPGPU," in ASPDAC, 2012 

H. Han, et al., "Exploiting Locality for Irregular Scientific Codes," IEEE Trans. Parallel and Distributed Systems, vol. 17, pp. 606-618, 2006 

R. Das, et al., "Communication Optimizations for Irregular Scientific Computations on Distributed Memory Architectures," J. Parallel Distrib. Comput., vol. 22, 

pp. 462-478, 1994. 
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Experimental Results – Cache Misses 

Reduction 

 

 

 

 

 

 sche_agnostic, sche_fixed and sche_variable 

 cps : low (50 cycles), medium (100 cycles) and high 

(200 cycles) 

23 
W.-C. Feng , et al., "To GPU Synchronize or not GPU Synchronize?," in ISCAS, 2010 
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Experimental Results – Execution Time 

Improvement 

 

 

 

 

 

 sche_fixed 

 Too restrictive to schedule more concurrent CTAs 

(moldyn and unstructured) 
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Conclusions 

 

 

 

 

 

 This paper  

 Formulate a general thread scheduling problem, 

Cache Capacity Aware Thread Scheduling Problem 

 

Not only prove the NP-hardness, but also propose 

two thread scheduling algorithms 

 

Achieve an average of  

44.7% cache misses reduction 

28.5% runtime enhancement 

Up to 62.5% for applications with more threads and 

higher complexity 
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