Cache Capacity Aware Thread Scheduling
for Irregular Memory Access on Many-Core
GPGPUs

Hsien-Kai Kuo, Ta-Kan Yen, Bo-Cheng Charles Lai and Jing-Yang Jou

Department of Electronics Engineering
National Chiao Tung University, Taiwan
Email : hkkuo[at]ee.eda.nctu.edu.tw

ASP-DAC 2013

Outline

Introduction

GPGPU Background

Motivational Examples

Cache Capacity Aware Thread Scheduling
Experimental Results

Conclusions

ity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Introduction —- GPGPU

General Purpose Graphic Processing Unit
An accelerator for general computing
Numerous computing cores (> 512 cores/chip)
Throughput-oriented

e £
=ay | & | 4§ | & | § ¢ § | § | § 1| 3
=
=

o =
E [| & | N | 5 | &8 i &8 | BN | B 1 ! 171

Techniques to alleviate memory bottleneck
Memory Coalescing
On-chip Shared Cache
Source: Nvidia, http://http://www.nvidia.com

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Introduction — Alleviate Memory
Bottleneck

Memory Coalescing
Combine several narrow accesses into a single wide one

Effective and widely used in regular applications
Fast Fourier Transform (FFT) and Matrix Multiplications

On-chip Shared Cache

Shared among several computing cores
Automatically exploit data reuse

However, in Irregular Applications
Lack of coordinated memory access (Non-Coalescing)

Numerous threads with limited cache capacity (Cache
Contention)

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Introduction — Cache Contention

1 Cache Contention

W Happen when the cache capacity is insufficient for all the
concurrent threads

= Example :

Contention free Cache contention

s o=

) - - _ -
Shared Cache ‘ Shared Cache ‘

”\/\Thread @ Per-thread working set

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Introduction — Previous Studies

Previous studies
Deng, et al. (ICCAD’09)
Scratch-pad memory to enhance coalescing

Zhang, et al. (ASPLOS’11)
Data and computation reordering to improve coalescing
Kuo, et al. (ASPDAC’12)
Thread clustering to enhance coalescing and mitigate cache
contention

Without considering the Cache Capacity
Cannot fully resolve the Cache Contention issue

Y. Deng, et al., "Taming Irregular EDA Applications on GPUs," in ICCAD, 2009
E. Z. Zhang, et al., "On-the-Fly Elimination of Dynamic Irregularities for GPU Computing," in ASPLOS, 2011
H.-K. Kuo, et al., "Thread Affinity Mapping for Irregular Data Access on Shared Cache GPGPU," in ASPDAC, 2012

ity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Introduction — Contributions

This paper
Formulate a general thread scheduling problem on

GPGPUs
Cache Capacity Aware Thread Scheduling Problem

Carry out a comprehensive analysis on the variants of the
problem

Nvidia’s Fermi architecture is modeled as a special variant

Propose thread scheduling algorithms for different variants
An average of 44.7% cache misses reduction
An average of 28.5% runtime enhancement

ity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

GPGPU Background — Programming
Model

Nvidia’s CUDA Programming Model
Cooperative Thread Array (CTA)
A collection of threads

Kernel
A collection of CTAs

4)

int main(){
/* serial codex*/ Kernel_A

kernel A<L<L<L192, 256>>>(arg0, argl, -)»

/* serial codex/

kernel B<<<256,192>>>(arg0, argl, ---) éé%%

} \. J

Source: Nvidia, http://http://www.nvidia.com

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

GPGPU Background — GPGPU
Architecture

! Nvidia’s Fermi GPGPU Architecture
W Streaming Multiprocessor (SM)

¥ Unified L2 Cache

W GigaThread Scheduler
LIFixed number of
concurrent CTAs

L1 This paper
@ Consider re-configuring

the number of concurrent

CTAs
CINeed synchronizations

Cache Capacity Aware Thread Scheduling

=

csse] - lesel

GigaThread Scheduler

v

<56

llssssl| fesssl

Unified L2 Cache

for Irregular Memory Access on Man

Source: Nvidia, http://http://www.nvidia.com

-Core GPGPUs

Motivational Examples — Example 1

1 Assume that

W Acollectionof CTAs={A,B,C,D,E, F, G, H, I, J, K, L}
m Working setsizes={1,8,3,1,2,2,1,7,4,4, 2, 5}

B Cache capacity = 10

B Maximum number of concurrent CTA=4

1 Example 1

Example 1 : Cache Capacity Agnostic Scheduling

Scheduling [Concurrent
Steps CTAs

Cache Contention Evaluation

Step1 A, B,C,D | 1+8+3+1=13>10 (Contention)
Step2 E,FG,H | 2+2+1+7=12>10 (Contention)
Step3 ,J, K, L 4+4+2+5=15>10 (Contention)

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Motivational Examples — Example 2

1 Example 2

™ Too restrictive to schedule more concurrent CTAs

Example 2 : Cache Capacity Aware Scheduling with

Fixed Number of Concurrent CTAs

Scl;t:g::ng Cor(I:c_:rlX';ent Cache Contention Evaluation
Step1 B, E 8 +2 =10 <10 (Contention free)
Step2 C,H 3+ 7 =10 =10 (Contention free)
Step3 L, J 5+ 4 =9 <10 (Contention free)
Step4 F | 2+ 2 =6 <10 (Contention free)
Stepb A, K 1+ 2=3<10 (Contention free)
Step6 D, G 1+ 1=2<10 (Contention free)

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Motivational Examples — Example 3

1 Example 3

@ Should also consider the synchronization cost

Example 3 : Cache Capacity Aware Scheduling with

Reconfigurable Number of Concurrent CTAs

Scheduling | Concurrent : :
Steps CTAs Cache Contention Evaluation
Step1 B, E 8 +2 =10 <10 (Contention free)
Step2 C,H 3+ 7=10=< 10 (Contention free)

Synchronize and re-conf

igure the number of concurrent CTAs

Step3

L, K, FJ

5+2+2+1=10<10 (Contention free)

Step4

J,I,D,G

4+4+1+1=10<10 (Contention free)

Cache Capacity Aware Thread Scheduling for Irreqular Memory Access on Man

-Core GPGPUs

Cache Capacity Aware Thread Scheduling
— Problem Formulation (1/4)

Input
c" : a collection of CTAs
c" ={c1, ¢, Cn}
w(c;) : working set size of the CTA ¢;

Output

s . a schedule of CTAs (a series of scheduling step)
s = {51; S2°° Sm}
Each scheduling step s; is a subset of c™

conc(s;) : concurrency of the scheduling step s;
Number of CTAs belongs to s;

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling
— Problem Formulation (2/4)

Constraint (Cache Capacity)
Vsi: Nicjes; W(¢) < Cap_unified L2

Cost Function

m + sync_cost(s™) : overall cost of the schedule s™
m : total number of scheduling steps
sync_cost(s™) : total synchronization cost
sync_cost(s™) = cps X Y sync(s;, si1)
sync(s;, s;+1) : necessity of synchronization

_ (0, conc(s;) = conc(S;4+1)
e) = { 1, conc(s;) # conc(s;+q)
cps . cost per synchronization

cpsERO<cps <1

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling
— Problem Formulation (3/4)

Problem Definition

Cache Capacity Aware Thread Scheduling
Problem : Given a collection of CTAs c¢™ with working
set size w(c;), the problem is to find a schedule s™
where the overall cost is minimized subject to cache
capacity constraint:

minimize m + sync_cost(s™)

subjectto Vs;: z W(Cj) < Cap_unified_L2
CjES;j

VSi -_/:Sj:SinSj =®
SiUSy 8, =c"

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling
— Problem Formulation (4/4)

NP-hardness

Lemma 1 : The Cache Capacity Aware Thread
Scheduling Problem is NP-hard

Proof : The NP-hard problem, Bin Packing Problem
can be reduced to this problem

P #NP
No optimal algorithm in polynomial time
Acceptable quality in polynomial time

Approximation algorithms

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling
— Fixed Concurrency (1/2)

Fixed Concurrency Constraint
Vs; # sj:conc(s;) = cons(sj)
Imply no synchronization cost
Reduced to k-Cardinality Bin Packing Problem

k-Cardinality Bin Packing Problem

Given : a set of items a, a,, -+, a,,, each with sizes
s(a;) and the bin capacity cap

Result : a division of the items into to a minimum
number of bins

Constraints : each bin contains at most k items and
Its aggregated size cannot exceed the capacity cap

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling
— Fixed Concurrency (2/2)

k-Cardinality Bin Packing Algorithms

Largest Memory First (LMF) and Iterated Worst-Case
Decreasing (IWFD)

Constant approximation ratio

Algorithm 1 : Thread Scheduling for Fixed Concurrency
k < maximum possible concurrency
sort ¢™ in decending order by working set size
repeat
cap <« w(cy) + w(cy) + -+ w(cy)
k—k-—1

until cap < Cap_unified_L2

cap <« Cap_unified_L2

s™ « K—CARDINALITY—BIN—PACKING (c", cap, k)
return s™

O O N UTL A WDN -

M. R. Garey, et al., "Worst-Case Analysis of Memory Allocation Algorithms," in ACM Symp. Theory of Computing, 1972
K. L. Krause, et al., "Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems," J. ACM, vol. 22, pp. 522-550, 1975

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling
— Variable Concurrency (1/2)

Cost Function: m + sync_cost(s™)

Trade-off between the number of scheduling steps (m)
and synchronization cost (sync_cost(s™))

Interesting Findings

Lemma 2 : For any schedule s™, the overall cost,
m + sync_cost(s™) is lesser or equal to 2m - 1

Lemma 3 : For any schedule s™, the synchronization
cost is minimum if the scheduling steps are sorted by
the concurrency (conc(s,))

ity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling
— Variable Concurrency (2/2)

Algorithm Design
Lemma 2 — Minimize the number of steps (m)

Lemma 3 — Minimize sync. cost (sync_cost(s™))

Algorithm 2 : Thread Scheduling for Variable Concurrency

k < maximum possible concurrency

cap < Cap_unified_L2

repeat
s™ « K—CARDINALITY—BIN—PACKING (¢, cap, k) Lemma 2
sort s™ by concurrency to minimize synchronization cost
old_cost < m + sync_cost(s™) Lemma 3
k—k—1
s™" « K—CARDINALITY—BIN—PACKING (c", cap, k)
sort s™' by concurrency to minimize synchronization cost

10 new_cost « m + sync_cost(s™')

v |11 until new_cost = old_cost

12 return s™

OO NOUTHS WDN -

lterative Refinement

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Experimental Results — Experiment
Setup (1/2)

GPGPU-Sim (ISPASS’09) Simulation Setup

Fermi’s Architectural Configurations in GPGPU-Sim

Number of SMs 15
32-wide pipeline, 32 threads/warp, 1536 threads/SM, 32768
SM configuration registers/SM,
number of CTAs/SM (dynamic reconfigurable, default 8)
L2 cache unified 768KB, 8-way, 64 byte/block

6 GDDRS5 channels, 2 chips/channel, 16 banks, 16 entries/chip,

DRAM FR-FCFS policy

Interconnection network single stage butterfly, 32-byte flit size

Thread clustering for CTA generation
Kuo, et al. (ASPDAC’12)

Ocelot for working set size analysis
Ocelot (PACT10)

A. Bakhoda, et al., "Analyzing CUDA Workloads Using a Detailed GPU Simulator," in ISPASS, 2009
H.-K. Kuo, et al., "Thread Affinity Mapping for Irregular Data Access on Shared Cache GPGPU," in ASPDAC, 2012
G. F. Diamos, et al., "Ocelot: A Dynamic Optimization Framework for Bulk-Synchronous Applications in Heterogeneous Systems," in PACT, 2010

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Experimental Results — Experiment

Setup (2/2)

Application Domains

Applications Fields Descriptions Sources Dafa set
sizes
bfs Electronic breadth first search 2.6 MB
sta Design static timing analysis Kuo. etal.| 3.0 MB
Automation ’
gsim (EDA) gate level logic simulation 3.5 MB
kernel abstracted from the GROMOS
nbf Molecular code 6.3MB
Pynamics f lculation in the CHARMM
moldyn (MD) orce caicufation in the Cosmic | 10.2MB
program
irreg Computational kernel of Partial Differential Equation 6.3MB
Fluid solver
euler Dynamics | finite-difference approximations on mesh 8.5MB
(CFD) . : : Chaos
unstructured fluid dynamics with unstructured mesh 10.2MB

H.-K. Kuo, et al., "Thread Affinity Mapping for Irregular Data Access on Shared Cache GPGPU," in ASPDAC, 2012

H. Han, et al., "Exploiting Locality for Irregular Scientific Codes," IEEE Trans. Parallel and Distributed Systems, vol. 17, pp. 606-618, 2006

R. Das, et al., "Communication Optimizations for Irregular Scientific Computations on Distributed Memory Architectures," J. Parallel Distrib. Comput., vol. 22,
pp. 462-478, 1994.

Aware Thread Scheduling for Irreqular Memory Access on Man

Experimental Results — Cache Misses
Reduction

] sche agnostic, sche_fixed and sche variable

W cps : low (50 cycles), medium (100 cycles) and high
(200 cycles)

m sche _agnostic m sche_fixed = sche_variable low
m sche variable_medium msche_variable_high

120%

ISS

100% -

80% -

60% -
40% -

Normalized Cache M

20% -

0% -

W.-C. Feng, et al., "To GPU Synchronize or not GPU Synchronize?," in ISCAS, 2010

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Experimental Results — Execution Time
Improvement

] sche fixed

™ Too restrictive to schedule more concurrent CTAs
(moldyn and unstructured)

m sche_agnostic m sche_fixed = sche_variable_low
m sche variable_medium msche_variable_high

20%
00% -
80% -
60%

_—

40% -
20% -
0% -

Normalized Execution Cycles

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Conclusions

This paper
Formulate a general thread scheduling problem,
Cache Capacity Aware Thread Scheduling Problem

Not only prove the NP-hardness, but also propose
two thread scheduling algorithms

Achieve an average of
44.7% cache misses reduction

28.5% runtime enhancement

Up to 62.5% for applications with more threads and
higher complexity

ity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

THANK YOU
FOR YOUR ATTENTION

WE WELCOME YOUR QUESTIONS, COMMENTS AND SUGGESTIONS

Hsien-Kai Kuo
hkkuo[at]ee.eda.nctu.edu.tw

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

