
Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling

for Irregular Memory Access on Many-Core

GPGPUs

 Hsien-Kai Kuo, Ta-Kan Yen, Bo-Cheng Charles Lai and Jing-Yang Jou

Department of Electronics Engineering

 National Chiao Tung University, Taiwan

Email : hkkuo[at]ee.eda.nctu.edu.tw

ASP-DAC 2013

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Outline

 Introduction

 GPGPU Background

 Motivational Examples

 Cache Capacity Aware Thread Scheduling

 Experimental Results

 Conclusions

2

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Introduction – GPGPU

 General Purpose Graphic Processing Unit

An accelerator for general computing

Numerous computing cores (> 512 cores/chip)

 Throughput-oriented

 Techniques to alleviate memory bottleneck

Memory Coalescing

On-chip Shared Cache

3
Source: Nvidia, http://http://www.nvidia.com

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Introduction – Alleviate Memory

Bottleneck

 Memory Coalescing

Combine several narrow accesses into a single wide one

Effective and widely used in regular applications

Fast Fourier Transform (FFT) and Matrix Multiplications

 On-chip Shared Cache

Shared among several computing cores

Automatically exploit data reuse

 However, in Irregular Applications

 Lack of coordinated memory access (Non-Coalescing)

Numerous threads with limited cache capacity (Cache

Contention)
4

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Introduction – Cache Contention

5

 Cache Contention

Happen when the cache capacity is insufficient for all the

concurrent threads

Example :

Shared Cache Shared Cache

Contention free Cache contention

… …

Thread Per-thread working set

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Introduction – Previous Studies

 Previous studies

Deng, et al. (ICCAD’09)

Scratch-pad memory to enhance coalescing

 Zhang, et al. (ASPLOS’11)

Data and computation reordering to improve coalescing

Kuo, et al. (ASPDAC’12)

Thread clustering to enhance coalescing and mitigate cache

contention

 Without considering the Cache Capacity

Cannot fully resolve the Cache Contention issue

6

Y. Deng, et al., "Taming Irregular EDA Applications on GPUs," in ICCAD, 2009

E. Z. Zhang, et al., "On-the-Fly Elimination of Dynamic Irregularities for GPU Computing," in ASPLOS, 2011

H.-K. Kuo, et al., "Thread Affinity Mapping for Irregular Data Access on Shared Cache GPGPU," in ASPDAC, 2012

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Introduction – Contributions

 This paper

 Formulate a general thread scheduling problem on

GPGPUs

Cache Capacity Aware Thread Scheduling Problem

Carry out a comprehensive analysis on the variants of the

problem

 Nvidia’s Fermi architecture is modeled as a special variant

Propose thread scheduling algorithms for different variants

An average of 44.7% cache misses reduction

An average of 28.5% runtime enhancement

7

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

 Nvidia’s CUDA Programming Model

Cooperative Thread Array (CTA)

A collection of threads

Kernel

A collection of CTAs

GPGPU Background – Programming

Model

int main(){
 /∗ serial code∗/
 ⋯
 kernel_A<<<192, 256>>>(arg0, arg1, ⋯)
 ⋯
 /∗ serial code∗/
 ⋯
 kernel_B<<<256, 192>>>(arg0, arg1, ⋯)
 ⋯
}

Kernel_A

CTA0

Source: Nvidia, http://http://www.nvidia.com

8

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

 This paper

Consider re-configuring

the number of concurrent

CTAs

Need synchronizations

GPGPU Background – GPGPU

Architecture

 Nvidia’s Fermi GPGPU Architecture

Streaming Multiprocessor (SM)

Unified L2 Cache

GigaThread Scheduler

Fixed number of

concurrent CTAs

Unified L2 Cache

SM

GigaThread Scheduler

SM SM

…

…

Source: Nvidia, http://http://www.nvidia.com

9

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Motivational Examples – Example 1

 Assume that

A collection of CTAs = {A, B, C, D, E, F, G, H, I, J, K, L}

Working set sizes = {1, 8, 3, 1, 2, 2, 1, 7, 4, 4, 2, 5}

Cache capacity = 10

Maximum number of concurrent CTA = 4

10

 Example 1

Example 1 : Cache Capacity Agnostic Scheduling

Scheduling

Steps

Concurrent

CTAs
Cache Contention Evaluation

Step1 A, B, C, D 1 + 8 + 3 + 1 = 13 > 10 (Contention)

Step2 E, F, G, H 2 + 2 + 1 + 7 = 12 > 10 (Contention)

Step3 I, J, K, L 4 + 4 + 2 + 5 = 15 > 10 (Contention)

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

 Example 2

 Too restrictive to schedule more concurrent CTAs

Motivational Examples – Example 2

11

Example 2 : Cache Capacity Aware Scheduling with

Fixed Number of Concurrent CTAs

Scheduling

Steps

Concurrent

CTAs
Cache Contention Evaluation

Step1 B, E 8 + 2 = 10 ≤ 10 (Contention free)

Step2 C, H 3 + 7 = 10 ≤ 10 (Contention free)

Step3 L, J 5 + 4 = 9 ≤ 10 (Contention free)

Step4 F, I 2 + 2 = 6 ≤ 10 (Contention free)

Step5 A, K 1 + 2 = 3 ≤ 10 (Contention free)

Step6 D, G 1 + 1 = 2 ≤ 10 (Contention free)

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

 Example 3

Should also consider the synchronization cost

Motivational Examples – Example 3

12

Example 3 : Cache Capacity Aware Scheduling with

Reconfigurable Number of Concurrent CTAs

Scheduling

Steps

Concurrent

CTAs
Cache Contention Evaluation

Step1 B, E 8 + 2 = 10 ≤ 10 (Contention free)

Step2 C, H 3 + 7 = 10 ≤ 10 (Contention free)

Synchronize and re-configure the number of concurrent CTAs

Step3 L, K, F, J 5 + 2 + 2 + 1 = 10 ≤ 10 (Contention free)

Step4 J, I, D, G 4 + 4 + 1 + 1 = 10 ≤ 10 (Contention free)

Synchronize and re-configure the number of concurrent CTAs

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling

– Problem Formulation (1/4)

 Input

 𝒄𝒏 : a collection of CTAs

𝒄𝒏 = 𝑐1, 𝑐2⋯ , 𝑐𝑛

𝒘 𝒄𝒊 : working set size of the CTA 𝑐𝑖

 𝒔𝒎 : a schedule of CTAs (a series of scheduling step)

𝒔𝒎 = 𝑠1, 𝑠2⋯ , 𝑠𝑚

Each scheduling step 𝑠𝑖 is a subset of 𝑐𝑛

𝒄𝒐𝒏𝒄 𝒔𝒊 : concurrency of the scheduling step 𝑠𝑖

Number of CTAs belongs to 𝑠𝑖

 Output

13

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

𝒎+ 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎 : overall cost of the schedule 𝑠𝑚

𝒎 : total number of scheduling steps

𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎 : total synchronization cost

 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎 = 𝒄𝒑𝒔 × 𝒔𝒚𝒏𝒄 𝒔𝒊, 𝒔𝒊+𝟏
𝑚−1
𝑖=0

𝒔𝒚𝒏𝒄 𝒔𝒊, 𝒔𝒊+𝟏 : necessity of synchronization

 𝒔𝒚𝒏𝒄 𝒔𝒊, 𝒔𝒊+𝟏 =
 0, 𝑐𝑜𝑛𝑐 𝑠𝑖 = 𝑐𝑜𝑛𝑐 𝑠𝑖+1
 1, 𝑐𝑜𝑛𝑐 𝑠𝑖 ≠ 𝑐𝑜𝑛𝑐 𝑠𝑖+1

𝒄𝒑𝒔 : cost per synchronization

 𝒄𝒑𝒔 ∈ ℝ, 0 < 𝑐𝑝𝑠 ≤ 1

Cache Capacity Aware Thread Scheduling

– Problem Formulation (2/4)

 Constraint (Cache Capacity)

14

 Cost Function

 ∀𝑠𝑖: 𝑤 𝑐𝑗𝑐𝑗∈𝑠𝑖 ≤ 𝑪𝒂𝒑_𝒖𝒏𝒊𝒇𝒊𝒆𝒅_𝑳𝟐

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling

– Problem Formulation (3/4)

 Problem Definition

Cache Capacity Aware Thread Scheduling

Problem : Given a collection of CTAs 𝒄𝒏 with working

set size 𝒘 𝒄𝒊 , the problem is to find a schedule 𝒔𝒎

where the overall cost is minimized subject to cache

capacity constraint:

minimize 𝒎 + 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎

subject to ∀𝑠𝑖: 𝑤 𝑐𝑗
𝑐𝑗∈𝑠𝑖

≤ 𝑪𝒂𝒑_𝒖𝒏𝒊𝒇𝒊𝒆𝒅_𝑳𝟐

 ∀𝑠𝑖 ≠ 𝑠𝑗: 𝑠𝑖 ∩ 𝑠𝑗 = ∅
 𝑠1 ∪ 𝑠2⋯𝑠𝑚 = 𝑐

𝑛

15

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling

– Problem Formulation (4/4)

 NP-hardness

  Lemma 1 : The Cache Capacity Aware Thread

Scheduling Problem is NP-hard

Proof : The NP-hard problem, Bin Packing Problem

can be reduced to this problem

 P ≠ NP

No optimal algorithm in polynomial time

Acceptable quality in polynomial time

Approximation algorithms

16

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling

– Fixed Concurrency (1/2)

 Fixed Concurrency Constraint

  ∀𝑠𝑖 ≠ 𝑠𝑗: 𝑐𝑜𝑛𝑐 𝑠𝑖 = 𝑐𝑜𝑛𝑠 𝑠𝑗

Imply no synchronization cost

Reduced to k-Cardinality Bin Packing Problem

Given : a set of items 𝑎1, 𝑎2, ⋯ , 𝑎𝑛, each with sizes

𝑠 𝑎𝑖 and the bin capacity 𝑐𝑎𝑝

Result : a division of the items into to a minimum

number of bins

Constraints : each bin contains at most 𝑘 items and

its aggregated size cannot exceed the capacity 𝑐𝑎𝑝

 k-Cardinality Bin Packing Problem

17

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Algorithm 1 : Thread Scheduling for Fixed Concurrency

1 𝑘 ← maximum possible concurrency
2 sort 𝑐𝑛 in decending order by working set size
3 𝐫𝐞𝐩𝐞𝐚𝐭
4 𝑐𝑎𝑝 ← 𝑤 𝑐1 + 𝑤 𝑐2 +⋯+𝑤 𝑐𝑘

5 𝑘 ← 𝑘 − 1
6 𝐮𝐧𝐭𝐢𝐥 𝑐𝑎𝑝 ≤ 𝐶𝑎𝑝_𝑢𝑛𝑖𝑓𝑖𝑒𝑑_𝐿2
7 𝑐𝑎𝑝 ← 𝐶𝑎𝑝_𝑢𝑛𝑖𝑓𝑖𝑒𝑑_𝐿2
8 𝑠𝑚 ← K− CARDINALITY−BIN−PACKING(𝑐𝑛, 𝑐𝑎𝑝, 𝑘)
9 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑚

Cache Capacity Aware Thread Scheduling

– Fixed Concurrency (2/2)

 k-Cardinality Bin Packing Algorithms

 Largest Memory First (LMF) and Iterated Worst-Case

Decreasing (IWFD)

Constant approximation ratio

18

M. R. Garey, et al., "Worst-Case Analysis of Memory Allocation Algorithms," in ACM Symp. Theory of Computing, 1972

K. L. Krause, et al., "Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems," J. ACM, vol. 22, pp. 522-550, 1975

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Cache Capacity Aware Thread Scheduling

– Variable Concurrency (1/2)

 Cost Function: 𝒎+ 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎

 Trade-off between the number of scheduling steps (𝒎)

and synchronization cost (𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎)

 Lemma 2 : For any schedule 𝒔𝒎, the overall cost,

𝒎+ 𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕 𝒔𝒎 is lesser or equal to 2𝒎 – 1

 Interesting Findings

 Lemma 3 : For any schedule 𝒔𝒎, the synchronization

cost is minimum if the scheduling steps are sorted by

the concurrency (𝒄𝒐𝒏𝒄(𝒔𝒊))

19

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Algorithm 2 : Thread Scheduling for Variable Concurrency

1 𝑘 ← maximum possible concurrency
2 𝑐𝑎𝑝 ← 𝐶𝑎𝑝_𝑢𝑛𝑖𝑓𝑖𝑒𝑑_𝐿2
3 𝐫𝐞𝐩𝐞𝐚𝐭
4 𝑠𝑚 ← K− CARD INALITY−BIN−PACK ING(𝑐𝑛, 𝑐𝑎𝑝, 𝑘)
5 𝐬𝐨𝐫𝐭 𝒔𝒎 𝒃𝒚 𝒄𝒐𝒏𝒄𝒖𝒓𝒓𝒆𝒏𝒄𝒚 𝒕𝒐 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒔𝒚𝒏𝒄𝒉𝒓𝒐𝒏𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕
6 𝑜𝑙𝑑_𝑐𝑜𝑠𝑡 ← 𝑚 + 𝑠𝑦𝑛𝑐_𝑐𝑜𝑠𝑡 𝑠𝑚
7 𝑘 ← 𝑘 − 1
8 𝑠𝑚

′
← K− CARD INAL ITY−BIN−PACK ING (𝑐𝑛, 𝑐𝑎𝑝, 𝑘)

9 sort 𝑠𝑚
′
 𝑏𝑦 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

10 𝑛𝑒𝑤_𝑐𝑜𝑠𝑡 ← 𝑚 + 𝑠𝑦𝑛𝑐_𝑐𝑜𝑠𝑡 𝑠𝑚
′

11 𝐮𝐧𝐭𝐢𝐥 𝑛𝑒𝑤_𝑐𝑜𝑠𝑡 ≥ 𝑜𝑙𝑑_𝑐𝑜𝑠𝑡
12 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑚

 Algorithm Design

 Lemma 2 → Minimize the number of steps (𝒎)

 Lemma 3 → Minimize sync. cost (𝒔𝒚𝒏𝒄_𝒄𝒐𝒔𝒕(𝒔𝒎))

Cache Capacity Aware Thread Scheduling

– Variable Concurrency (2/2)

Lemma 2

Lemma 3

It
e
ra

ti
v
e

 R
e
fi
n
e
m

e
n
t

20

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Experimental Results – Experiment

Setup (1/2)

Fermi’s Architectural Configurations in GPGPU-Sim

Number of SMs 15

SM configuration

32-wide pipeline, 32 threads/warp, 1536 threads/SM, 32768

registers/SM,

number of CTAs/SM (dynamic reconfigurable, default 8)

L2 cache unified 768KB, 8-way, 64 byte/block

DRAM
6 GDDR5 channels, 2 chips/channel, 16 banks, 16 entries/chip,

FR-FCFS policy

Interconnection network single stage butterfly, 32-byte flit size

 GPGPU-Sim (ISPASS’09) Simulation Setup

 Thread clustering for CTA generation

Kuo, et al. (ASPDAC’12)

 Ocelot for working set size analysis

Ocelot (PACT’10)

 21

A. Bakhoda, et al., "Analyzing CUDA Workloads Using a Detailed GPU Simulator," in ISPASS, 2009

H.-K. Kuo, et al., "Thread Affinity Mapping for Irregular Data Access on Shared Cache GPGPU," in ASPDAC, 2012

G. F. Diamos, et al., "Ocelot: A Dynamic Optimization Framework for Bulk-Synchronous Applications in Heterogeneous Systems," in PACT, 2010

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Experimental Results – Experiment

Setup (2/2)

Irregular Massive Parallel Applications

Applications Fields Descriptions Sources
Data set

sizes

bfs Electronic

Design

Automation

(EDA)

breadth first search

Kuo, et al.

2.6 MB

sta static timing analysis 3.0 MB

gsim gate level logic simulation 3.5 MB

nbf Molecular

Dynamics

(MD)

kernel abstracted from the GROMOS

code

Cosmic

6.3MB

moldyn
force calculation in the CHARMM

program
10.2MB

irreg Computational

Fluid

Dynamics

(CFD)

kernel of Partial Differential Equation

solver
6.3MB

euler finite-difference approximations on mesh
Chaos

8.5MB

unstructured fluid dynamics with unstructured mesh 10.2MB

 Application Domains

22

H.-K. Kuo, et al., "Thread Affinity Mapping for Irregular Data Access on Shared Cache GPGPU," in ASPDAC, 2012

H. Han, et al., "Exploiting Locality for Irregular Scientific Codes," IEEE Trans. Parallel and Distributed Systems, vol. 17, pp. 606-618, 2006

R. Das, et al., "Communication Optimizations for Irregular Scientific Computations on Distributed Memory Architectures," J. Parallel Distrib. Comput., vol. 22,

pp. 462-478, 1994.

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Experimental Results – Cache Misses

Reduction

 sche_agnostic, sche_fixed and sche_variable

 cps : low (50 cycles), medium (100 cycles) and high

(200 cycles)

23
W.-C. Feng , et al., "To GPU Synchronize or not GPU Synchronize?," in ISCAS, 2010

0%

20%

40%

60%

80%

100%

120%

bfs sta gsim nbf moldyn irreg euler unstr.

EDA MD CFD

N
o

rm
a

li
z
e

d
 C

a
c

h
e

 M
is

s

sche_agnostic sche_fixed sche_variable_low
sche_variable_medium sche_variable_high

44.7%

90.4%

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Experimental Results – Execution Time

Improvement

 sche_fixed

 Too restrictive to schedule more concurrent CTAs

(moldyn and unstructured)

24

0%

20%

40%

60%

80%

100%

120%

bfs sta gsim nbf moldyn irreg euler unstr.

EDA MD CFD

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 C

y
c

le
s

sche_agnostic sche_fixed sche_variable_low
sche_variable_medium sche_variable_high

28.5%

62.5%

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

Conclusions

 This paper

 Formulate a general thread scheduling problem,

Cache Capacity Aware Thread Scheduling Problem

Not only prove the NP-hardness, but also propose

two thread scheduling algorithms

Achieve an average of

44.7% cache misses reduction

28.5% runtime enhancement

Up to 62.5% for applications with more threads and

higher complexity

25

Cache Capacity Aware Thread Scheduling for Irregular Memory Access on Many-Core GPGPUs

26

THANK YOU

FOR YOUR ATTENTION
WE WELCOME YOUR QUESTIONS, COMMENTS AND SUGGESTIONS

Hsien-Kai Kuo

hkkuo[at]ee.eda.nctu.edu.tw

