

Reliability Assessment of Safety-Relevant Automotive Systems in a Model-Based Design Flow

<u>Sebastian Reiter</u>, Michael Pressler, Alexander Viehl, Oliver Bringmann, Wolfgang Rosenstiel

ASP-DAC 2013

24.01.2013

Motivation

- Software within vehicles has increased exponentially
 - More than 70 embedded platforms
 - System complexity and distribution increased
 - Synergistically interconnected
- Probability of operational errors increased similar
- Software covers safety-relevant tasks
- Erroneous delivered service could result in disastrous accidents

State-Of-The-Art - FMEA

- Failure Mode and Effect Analysis (FMEA)
 - Recommended by the IEC 61508 [1] and the ISO 26262 [2]
- Basic idea
 - Identification of potential faults
 - Determination of the resulting error effects
 - Rating according to the severity and occurrence rate
- Drawbacks
 - Based on subjective estimations
 - Assessment of error tolerance
 - Hard to detected internal system dependencies and correlations
 - System knowledge is provided by the involved people
 - Challenging to share with component suppliers
 - Mostly not possible to reuse system knowledge
 - Cooperation of involved people is very important

Goal - Enhanced FMEA

- Reduce the subjective assessment
 - Improve the accuracy
 - Failure rates assessment
 - Assess influence of error tolerance mechanism
 - Detection of internal system interdependency
- Share information between component suppliers
 - Facilitate the collection of expert knowledge
 - Reuse of existing system knowledge
- Automated system analysis
 - Accelerate analysis in re-design loops
- Close integration into existing design flows
 - Reduce overhead of the analysis
 - Support the complete design process

Approach

- FMEA support by system simulations
 - Simulate errors affecting the system
 - Use of virtual prototypes
 - Quantitative reliability assessment
 - Modular simulation framework
- Integration into existing model-driven design flows
 - Access already specified information
- -driven -dy specified

System

Assessment

Model-based Specification

Reuse

Information

Link analysis results with system specification

Documentation

Error Effect Simulation

- Virtual Prototyping
- Error Stimulation
- Effect Monitoring
- Evaluation Platform
- Analysis Flow

Virtual Prototyping

- A software based simulation kernel
 - Simulation of required system modules [M]
 - Functional and timing behavior
 - Event-driven simulation language SystemC [3]
 - Evaluation of hardware/software systems
 - No physical prototypes required
 - Support of different level of abstraction
 - Loosely timed
 - Cycle accurate
 - Applicable along the design process

M System Module

Error Stimulation

- Error injector module [E]
 - Stimulates error within the virtual prototype
 - E.g. Bit-Flips, Cross-Talk or a Stuck-At errors
 - Supports four basic error modes
 - Modify content information
 - Modify timing behavior
 - Halt error mode
 - Complete loss of a signal
 - Combination for more complex errors
 - Erratic errors by content and timing corruption

Effect Monitoring

- Watch points [WP]
 - Monitoring functional and timing behavior
 - Error prone system parts are neglected
 - Five failure modes are monitored
 - Content failure: Signal changes with correct timing but to an incorrect value
 - Early / late failure: Signal changes to the correct value but too early or too late
 - Signal loss: A signal change is missing
 - Additional signal: An additional signal change happens

val₄

val_A

val_B

val

val

val

Evaluation Platform

- Integration of the error injectors and watch points
 - Analysis library
 - Configured error injector instances
 - Watch point instances
 - Automatic generation by the model-driven tool chain
 - User intervention
 - Manual specification of references to the analysis library
 - Limited to a few lines of code

Analysis Flow

- 1. Reference trace generation
 - Error free system simulation
 - Usage of different input vectors
 - Evaluate system with different scenarios
 - Coverage directed test pattern generation

Analysis Flow

- 1. Reference trace generation
- 2. Repeated execution with different error stimulations
 - Error prone system simulation
 - Each error scenario is simulated with the complete set of input vectors

Analysis Flow

- 1. Reference trace generation
- 2. Repeated execution with different error stimulations
- 3. Comparison of reference trace file with error prone simulation results
 - Deviation will indicate potential failures
 - Comparison of trace files with the same input vector

Design Flow Integration

- Model-Driven Tool Chain - A Survey
- Model-Centric
 Development
- Integration of the Analysis
- Modeling
 Framework
 Extensions

Model-Driven Tool Chain - A Survey

- Existing environment [4]
 - Software components
 - Types / Interfaces
 - Instantiation
 - Assembly
 - Hardware resources
 - Parameterization with MARTE [5] stereotypes
 - Deployment
 - Assignment of SW instances to HW resources
- Needed extensions
 - Reliability specification
 - Analysis specification
 - Information exchange with the error effect simulation
 - Parameterization of HW/SW instances

- Information base creation
 - Modeling tool chain
 - System configuration
 - Structural information
 - System parameters

- Information base creation
 - Modeling tool chain
 - System configuration
 - Reliability information
 - Fault, Error, Failure specification
 - Analysis Configuration

- Information base creation
 - Modeling tool chain
 - System configuration
 - Reliability information
 - Support system refinements and optimizations

(AUTOSAR)

ECU

Resources

IP-XACT

System Requirements

Model-based Specification

Components

Constraints

SW-

Modeling Languages: UML / MARTE / SysML

FIBEX

- Information base creation
- Information extraction
 - .xml configuration files
 - Model-to-model transformation
 - Transformation between
 - Editor meta models
 - XML schemas
 - Query/Views/ Transformation (QVT) language

- Information base creation
- Information extraction
- Analysis configuration
 - Analysis library created
 - A configured error injector for each error state
 - A watch point instance for each failure state
 - Virtual prototype configuration
 - Instances creation
 - Parameterization

- Information base creation
- Information extraction
- Analysis configuration
- Analysis execution
 - For each error injector multiple simulation are executed
 - Mean failure probability
 - Associated watch points are monitoring

- Information base creation
- Information extraction
- Analysis configuration
- Analysis execution
- Analysis results are back-annotated
 - Model-to-model transformation
 - Failure probabilities

- Fault, Error and Failure specification
 - State diagram with states for
 - Potential errors
 - Resulting failures
 - Transitions between error and failure states
 - Automatically inserted by the analysis
 - Specification of relations between error and failures
 - Annotated with a probability using stereotypes

	«errorModel» BitErrorModel	
nitial0	transklötnor excensifization {transflunct={p = binom(n) (0) (1 - p)^(n)}} transl.Bitmor transl.Bitmor	«failureFree» noFailure
ſ	externalFaults (transfluct=[p = binom(n){1} p (1-p)^(n-1)]) tarsBitError tarsBitError	«failureMode» syntaxFailure
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{setters} \\ \hline \\ \left(\text{transfFunct} \left[p = \text{binom} \left(n \right) \left\{ 2 \right\} \circ \left\{ 2 \right\} \left\{ 1 \right\} \circ p \right\} \left\{ n \right\} \right\} \right\} \\ \hline \\ \text{transfBitters} \\ \hline \\ \begin{array}{c} \text{transfBitters} \\ \hline \\ \left(\text{transfFunct} \left[p = \text{binom} \left(n \right) \left\{ 3 \right\} \circ \left\{ 3 \right\} \left\{ 1 \right\} \circ \left\{ n \right\} \right\} \right\} \right\} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \begin{array}{c} \text{setters} \\ \text{setters} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \text{setters} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \text{setters} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \text{setters} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \text{setters} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \text{setters} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \text{setters} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \{setters} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \ \end{array} \\ \begin{array}{c} \text{setters} \\ \ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{setters} \\ \end{array} \\ \end{array} \\ \end{array}	failureModes contentFailure
	tans4BiEnor -externi3*urk {transflunct=[s=tkinon(h){4} p^{-}(1+s)^{-}(n-4])] 4BiEtror transfBiEtror	«failureMode» undetectedPayloadComption
		 unclassifiedFailure» unclassifiedFailures

- Fault, Error and Failure specification
 - Grouping of errors and failures
 - Partitioned into state diagrams
 - A service oriented system partitioning
 - Concatenation of state diagrams
 - · Specification of causality chains
 - Entry points stereotyped as << internal fault >>

		«errorModel» BitErrorModel	
	transNoError		
Initial0	$\label{eq:action} \begin{array}{l} & \mbox{externalFault*} \\ {transfFunct=[p = binom \{n\} \{0\} \ (1-p)^{n}]} \end{array}$	> roBitError	«failureFree» noFailure
	trans1BitError		
ſ	$\label{eq:constraint} $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	-> eerror» 1BitError	≪failureMode> syntaxFailure
	tans2BitError		
	$\label{eq:constraint} $$ {transfFunct=[p = \binom{n}{2} p^{2} (1-p)^{n-2}]} $$$	> 2BitError	
	trans3BitError		«failureMode» contentFailure
-	$\label{eq:externalFaults} \\ {\transfFunct={p = \binom{n}{3} p^{3} (1-p)^{n-3}}} $		
	tans4BitError		«failureMode»
_	$\label{eq:externalFault} $$ {transfFunct={p = binom{n}{4} p^{4} (1-p)^{n-4}} }$	+error + 4BitError	undetectedPayloadCorruption
	trans5BitError		
	$\label{eq:constraint} $$ {transfFunct={p = binom{n}{8} p^{8} (1-p)^{n-8}}} $$$	*error *BitError	«unclassifiedFailure» unclassifiedFailures

- Fault, Error and Failure specification
- Error deployment
 - Assignment of errors to hardware/software instances
 - Composite structure diagram
 - Specifies the system structure
 - Extended with error deployment information
 - Stereotype to associate error models with hardware/software instances

- Fault, Error and Failure specification
- Error deployment
- Analysis boundary conditions
 - Class diagram containing analysis contexts
 - Analysis type
 - Simulation amount
 - Each error state is associated with a single analysis context

- Fault, Error and Failure specification
- Error deployment
- Analysis boundary conditions
- System specification
 - Automatic configuration of the virtual prototype
 - Structural information
 - Parameterization of the virtual system
 - Requirement annotations for each component instance

Use Case - Traffic Sign Recognition

Traffic Sign Recognition Scenario Experimental Results Traffic Sign Recognition FlexRay TSR Enhancement

Traffic Sign Recognition (TSR)

- Camera module
 - Image stream from the road ahead
- Recognize module
 - Pre-processing (e.g. Gaussian smooth)
 - Circle detection and segmentation
- Classify module
 - Support-vector-machine (SVM)
 - Classify speed signs
- Display module
 - Human machine interface
 - Visualize speed limitations
- FlexRay bus [6]
 - Connection of the different TSR modules

Experimental Results: FlexRay

- Bit-Errors within the FlexRay Frame
 - Monitor FlexRay controller service interface
 - Mostly syntax failure [6] raised
 - Undetected payload corruption
 - Probability lesser 1E-08
 - Amount of corrupted frames simulated: ~6,7E08

Experimental Results: FlexRay

- Next step: FlexRay controller errors onto the TSR
 - Create causality chain of service failure to error
 - Error modes
 - Complete frame losses
 - Payload corruptions
- Runtime influence
 - Context of the TSR/FlexRay scenario
 - Error injectors and watch points in the most utilized device
 - Increases the runtime by 6-7%

Experimental Results: TSR

- TSR application assessment raw results
 - Errors injected at FlexRay controller interface
 - Watch points at TSR module results
 - Bit Errors affect transmitted images

Experimental Results: TSR

- TSR application assessment processed results
 - All monitored probabilities summarized
 - Application robust under data corruption
 - Only parts of the transmitted image are evaluated
 - SVM tolerates corrupted data
 - Images are distributed over different frames
 - Traffic sign is contained in a sequence of images

Bit Error Rate

Watch point Recognize

Watch point Display

Watch point Classify

24.01.2013

Experimental Results: TSR Enhancement

- Increase the reliability of the TSR system
 - Hough-Transformation
 - Detect circles with a wider spectrum of radii
 - Increases the multiplicity of single traffic sign detections
 - Voting algorithm in the classify device
 - React on sign changes more rapidly
 - Communication layer
 - Acknowledgement mechanism
 - Message retries
- Easy reassessment with existent model
- Asses influence of the error tolerance mechanism

Conclusion

- Simulation based assessment of failure rates
 - Reducing subjective estimations
 - Automatic identification of causality chains
- Acceleration of re-design loops
 - Re-execution of already existing models
- Integration in a model-based design flow
 - Re-use of already modeled information
 - Reducing the overhead of the analysis
 - Seamlessly integrated by back-annotation of the results
 - Single source of information to support a FMEA
- Analysis can range from a rough estimation to an in-detail analysis

Thank you for your attention!

Contact person

Sebastian Reiter

FZI Forschungszentrum Informatik Systementwurf in der Mikroelektronik Haid-und-Neu-Str. 10-14 76131 Karlsruhe

sreiter@fzi.de www.fzi.de/ispe

References

- (1) IEC. IEC 61508-7: Overview of techniques and measures, 2000
- (2) ISO/DIS 26262, June 28, 2009, ISO standard
- (3) IEEE 1666-2011 -
 - IEEE standard for standard SystemC language reference manual
- (4) CHESS project page: http://chess-project.ning.com
- (5) MARTE specification version 1.0 (formal/2011-06-02); http://www.omg.org/spec/MARTE/1.1/PDF
- (6) FlexRay Consortium. FlexRay Communications System Protocol Specification Version 3.0. Revision A, 2010