
1

Register and Thread Structure
Optimization for GPUs

Yun (Eric) Liang, Zheng Cui, Kyle Rupnow, Deming Chen

Peking University, China

Advanced Digital Science Center, Singapore

University of Illinois at Urbana Champaign, USA

2

Modern Computing Systems

 GPUs

 Computation and bandwidth

 Three of top-five high performance machines on the June

2011 Top 500 list

 Top two machines on the Green 500 list of the most energy-

efficient supercomputers

 Heterogeneity (CPU, GPU, …) common

 Low-power embedded system

 Tegra 2/3/4

3

Modern Computing Systems

CPUs  i7 @ 263mm2

 Control heavy

 Complex core

 Less space devoted to computation resources

Good at ILP

4

Modern Computing Systems

GPUs GF100 @ 529 mm2

 Simple cores

 Many cores

Data parallelism

 Good at TLP

 Bad at control

5

GPU Performance Optimization

Performance tuning is difficult

 Many architecture and application parameters

 Kernel development is a heavy lifting task

Automatic analysis and performance optimization

Register and thread structure optimization

 Joint optimization problem

6

Register Allocation

Registers

Shared

memory

SM

Registers

Shared

memory

SM ……

Large register file

 GTX480: 49152 bytes; 32768 registers (32 bit) per SM

 nvcc interface: -maxReg: maximum number of registers

used per thread.

7

Thread Structure

GridSize: number of thread blocks

BlkSize: number of threads per thread block

Total threads: gridSize x blkSize

Thread structure

 Workload of one thread

 Number of active threads

 Thread scheduling

8

Register and Thread Structure Optimization

GPU kernel performance

Single thread

performance

Number of active

threads

Register allocation per

thread
Thread Structure

9

Joint Design Space

Large design space

Counter-intuitive performance tradeoff

Performance improvement potential

10

Joint Design Space – More Kernels

11

Occupancy

30%

40%

50%

60%

70%

80%

90%

100%

16 24 32 40 48 56

O
c
c
u

p
a
n

c
y

blkSize=64 blkSize=128

blkSize=256 blkSize=512

Optimal

Default

Register Usage

0.6

0.7

0.8

0.9

1.0

1.1

1.2

16 24 32 40 48 56

S
p
e
e
d
u
p
 o

v
e
r

d
e
fa

u
lt

blkSize=64 blkSize=128

blkSize=256 blkSize=512

Optimal
Default

Register Usage

12

Challenge… and Opportunity

Large design space

 Consistent increase in the shared resource and register

limit

Need to estimate performance accurately

 Measurement not feasible

Big speedup opportunity

13

Performance Estimation

Single thread performance

 Latency of instructions

 Dependencies among instructions

 Control flow of the program

 Basic block execution frequency

14

Latency of Instruction

Assembly code: Cuobjdump

Micro-benchmarks approach

 H. Wong et al. Demystifying GPU microarchitecture

through microbenchmarking. In ISPASS, 2010.

1. MOV R5, R4;

2. F2F R4, R4;

3. FFMA R52, R55, c[xxx], R5;

4. FMUL R53, R5, xxx;

5. MOV R55, xxx;

6. FSETP P0, xxx, R5, xxx;

7. F2F R56, R52;

8. FMUL R53, R5, R53;

9. FMUL R5, R52, xxx;

10.FMUL R56, R52, R5;

11.FMUL R58, R53, xxx;

15

Dependencies among Instructions

Instruction dependency graph

 RAW, WAR, WAW

Basic block latency estimated as critical path

1

2 3 4

5 6 7 8

9

10 11

12
13 14

Instruction dependency graph

16

Control Flow Graph

Analysis of cuobjdump code to gather CFG

GPGPU-Sim to gather execution frequencies

 A. Bakhoda et al. Analyzing CUDA worloads using a

detailed GPU simulator. In ISPASS, 2009.

17

Single Thread Performance Estimation

Instruction latency

Dependencies among instructions

Control flow graph

Basic block execution frequencies

18

Kernel Performance Estimation

Overall performance depends on

 Single thread performance (Latency estimation)

 Number of active threads (Occupancy)

Register and occupancy

 Reg ratio is a linear estimate of thread latency

 Product of Reg ratio and occupancy

Performance and occupancy

 2-tuple < T, C >

 C = Cycle(thread)

 T denotes the remaining space for active threads

19

Design Space Exploration

Different DSE algorithms with tradeoffs

 GPU kernel performance

 DSE runtime

Design space exploration approaches

 Exhaustive Search (ES) – Infeasible, but optimal

 RO Search (ROS)

 Performance and Occupancy Search (POS)

 POS with filtering (POSF)

20

RO Search (ROS)

Use Reg ratio x Occupancy as performance metric

0 < Reg ratio <= 1; 0 < Occupancy <= 1

Find configurations with maximal RO value

Break ties through empirical measurement

21

Performance and Occupancy Search (POS)

Design space parameters

 gridSize, blkSize, reg, PO metric (T,C)

Pareto-optimal problem

 Two candidates, A & B: if A is better in both T & C, it

dominates B and B can be eliminated

Detailed Algorithm

 Step 1: build the pareto-optimal set of candidates using

performance estimation

 Step 2: compare candidates empirically to verify

selection

22

PO Search – Example Pareto-Optimal Set

Find pareto-optimal points and compare

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

C
:

S
in

g
le

 t
h

re
a
d

 p
e
rf

o
rm

a
n

c
e

(t
h

o
u

s
a

n
d

s
 c

y
c

le
s

)

T: remaining space for active threads

Pareto-Optimal curve

23

POS with Filtering (POSF)

Prune candidates less likely to be the optimal

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

C
:

S
in

g
le

 t
h

re
a
d

 p
e
rf

o
rm

a
n

c
e

(t
h

o
u

s
a

n
d

s
 c

y
c

le
s

)

T: remaining space for active threads

High

Occupancy

Low

Occupancy

Pareto-Optimal curve

24

Solution Summary

nvcc provides interface for register control

 Maxreg: maximal number of registers allocated per

thread

Thread structure

 blkSize and gridSize are kernel call arguments

Algorithms

 ES, ROS, POS, POSF

Suitable for compiler integration and portable to

any GPU architecture

25

Experiments

Benchmarks

Blackscholes (BS) CUDA SDK blkSize and gridSize

MarchingCubes (MC) CUDA SDK blkSize/gridSize

Nbody (NB) CUDA SDK blkSize/gridSize

Particles (Par) CUDA SDK blkSize/gridSize

3D Audio (Aud) Real-

applications

 blkSize

CFD Solver (CFD) Rodinia blkSize/gridSize

GTX480

26

Design Space

Register per thread

 16 – 63

 Threads per block

 multiple of 32 as warp size is 32

 32 to 512

POSF filter range

 0.3 – 0.5

27

Speedup on GTX480

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

BS MC NB Par Aud CFD Average

ES POS POSF ROSG
P

U
 k

e
rn

e
l
p

e
rf

o
rm

a
n

c
e

 s
p

e
e

d
u

p
 o

v
e

r
d

e
fa

u
lt

 s
e

tt
in

g

1.36X

28

Speedup on GTX480

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

BS MC NB Par Aud CFD Average

ES POS POSF ROSG
P

U
 k

e
rn

e
l
p

e
rf

o
rm

a
n

c
e

 s
p

e
e

d
u

p
 o

v
e

r
d

e
fa

u
lt

 s
e

tt
in

g

1.36X

1.34X

1.33X

1.01X

29

Design Space Exploration Runtime

Benchs Runtime (sec) Speedup

ES RO POS POSF POSF

BS 14472 55 693 244 59X

MC 25746 95 465 169 152X

NB 76490 225 667 64 1199X

Par 40560 183 416 76 531X

Aud 17454 70 1649 274 64X

CFD 4364 21 270 34 128X

Average 355X

31

Conclusion

GPU optimization of register & thread structure

 Acceleration opportunity, but design space very large

 Accurate performance estimation

 Efficient design space exploration

POS, POSF algorithm

 High improvement with small runtime overhead

 Kernel latency speedup 1.33X

 Design space exploration speedup 355X

32

Thank you !!!

