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Modern Computing Systems 

 GPUs 

 Computation and bandwidth  

 Three of top-five high performance machines on the June 

2011 Top 500 list 

 Top two machines on the Green 500 list of the most energy-

efficient supercomputers 

 Heterogeneity (CPU, GPU, …) common 

 Low-power embedded system 

 Tegra 2/3/4  



3 

Modern Computing Systems 

CPUs  i7 @ 263mm2 

 Control heavy 

 Complex core 

 Less space devoted to computation resources 

 

Good at ILP 
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Modern Computing Systems 

GPUs GF100 @ 529 mm2 

 Simple cores 

 Many cores 

 

Data parallelism 

 Good at TLP 

 Bad at control 
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GPU Performance Optimization 

Performance tuning is difficult  

 Many architecture and application parameters 

 Kernel development is a heavy lifting task 

Automatic analysis and performance optimization 

Register and thread structure optimization 

 Joint optimization problem 
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Register Allocation 

Registers  

Shared 

memory 

SM 

Registers  

Shared 

memory 

SM …… 

Large register file 

 GTX480: 49152 bytes; 32768 registers (32 bit) per SM 

 nvcc interface: -maxReg: maximum number of registers 

used per thread. 
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Thread Structure 

GridSize: number of thread blocks 

BlkSize: number of threads per thread block 

Total threads: gridSize x blkSize 

Thread structure 

 Workload of one thread  

 Number of active threads 

 Thread scheduling 
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Register and Thread Structure Optimization 

GPU kernel performance 

Single thread 

performance 

Number of active 

threads 

Register allocation per 

thread 
Thread Structure 
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Joint Design Space 

Large design space 

Counter-intuitive performance tradeoff 

Performance improvement potential 
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Joint Design Space – More Kernels 
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Challenge… and Opportunity 

Large design space  

 Consistent increase in the shared resource and register 

limit 

 

Need to estimate performance accurately 

 Measurement not feasible 

 

Big speedup opportunity 
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Performance Estimation 

Single thread performance 

 Latency of instructions 

 Dependencies among instructions 

 Control flow of the program 

 Basic block execution frequency 
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Latency of Instruction 

Assembly code: Cuobjdump  

Micro-benchmarks approach  

 H. Wong et al. Demystifying GPU microarchitecture 

through microbenchmarking. In ISPASS, 2010.  

1. MOV    R5,      R4; 

2. F2F       R4,      R4; 

3. FFMA  R52,    R55,    c[xxx],  R5; 

4. FMUL  R53,    R5,      xxx; 

5. MOV    R55,    xxx; 

6. FSETP P0,       xxx,    R5,       xxx; 

7. F2F       R56,    R52; 

8. FMUL  R53,    R5,      R53; 

9. FMUL  R5,      R52,    xxx; 

10.FMUL R56,     R52,    R5; 

11.FMUL R58,     R53,    xxx; 
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Dependencies among Instructions 

Instruction dependency graph 

 RAW, WAR, WAW 

Basic block latency estimated as critical path 
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Instruction dependency graph 



16 

Control Flow Graph 

Analysis of cuobjdump code to gather CFG 

GPGPU-Sim to gather execution frequencies 

 A. Bakhoda et al. Analyzing CUDA worloads using a 

detailed GPU simulator. In ISPASS, 2009. 
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Single Thread Performance Estimation 

Instruction latency  

Dependencies among instructions 

Control flow graph 

Basic block execution frequencies 

 

 

 



18 

Kernel Performance Estimation 

Overall performance depends on  

 Single thread performance (Latency estimation) 

 Number of active threads (Occupancy) 

Register and occupancy 

 Reg ratio is a linear estimate of thread latency  

 Product of Reg ratio and occupancy 

Performance and occupancy  

 2-tuple < T, C > 

 C = Cycle(thread) 

 T denotes the remaining space for active threads 
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Design Space Exploration 

Different DSE algorithms with tradeoffs 

 GPU kernel performance 

 DSE runtime 

 

Design space exploration approaches 

 Exhaustive Search (ES) – Infeasible, but optimal 

 RO Search (ROS)  

 Performance and Occupancy Search (POS) 

 POS with filtering (POSF)  
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RO Search (ROS)  

Use Reg ratio x Occupancy as performance metric 

0 < Reg ratio <= 1; 0 < Occupancy <= 1  

Find configurations with maximal RO value 

Break ties through empirical measurement  



21 

Performance and Occupancy Search (POS) 

Design space parameters 

 gridSize, blkSize, reg, PO metric (T,C) 

Pareto-optimal problem 

 Two candidates, A & B: if A is better in both T & C, it 

dominates B and B can be eliminated 

 

Detailed Algorithm 

 Step 1: build the pareto-optimal set of candidates using 

performance estimation 

 Step 2: compare candidates empirically to verify 

selection 
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PO Search – Example Pareto-Optimal Set 

Find pareto-optimal points and compare  
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POS with Filtering (POSF)  

Prune candidates less likely to be the optimal 
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Solution Summary 

nvcc provides interface for register control 

 Maxreg: maximal number of registers allocated per 

thread 

Thread structure  

 blkSize and gridSize are kernel call arguments 

 

Algorithms  

 ES, ROS, POS, POSF  

Suitable for compiler integration and portable to 

any GPU architecture 
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Experiments  

Benchmarks 

Blackscholes (BS) CUDA SDK blkSize and gridSize 

MarchingCubes (MC) CUDA SDK blkSize/gridSize 

Nbody (NB) CUDA SDK        blkSize/gridSize 

Particles (Par) CUDA SDK        blkSize/gridSize 
 

3D Audio (Aud) Real-

applications 

           blkSize 

CFD Solver (CFD) Rodinia blkSize/gridSize 

GTX480  
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Design Space 

Register per thread 

 16 – 63 

 Threads per block  

  multiple of 32 as warp size is 32 

  32 to 512 

POSF filter range 

 0.3 – 0.5 
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Speedup on GTX480 
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Speedup on GTX480 
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Design Space Exploration Runtime  

Benchs  Runtime (sec) Speedup 

ES RO POS POSF POSF 

BS 14472 55 693 244 59X 

MC 25746 95 465 169 152X 

NB 76490 225 667 64 1199X 

Par 40560 183 416 76 531X 

Aud 17454 70 1649 274 64X 

CFD 4364 21 270 34 128X 

Average  355X 
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Conclusion 

GPU optimization of register & thread structure 

 Acceleration opportunity, but design space very large 

 Accurate performance estimation 

 Efficient design space exploration 

 

POS, POSF algorithm 

 High improvement with small runtime overhead 

 Kernel latency speedup 1.33X 

 Design space exploration speedup 355X 



32 

Thank you !!! 


