On Potential Design Impacts of Electromigration Awareness

Andrew B. Kahng, <u>Siddhartha Nath</u> and Tajana S. Rosing VLSI CAD LABORATORY, UC San Diego

UC San Diego / VLSI CAD Laboratory

Outline

Motivation Previous Work Our Work Preliminaries Study 1: MTTF vs. F_{max} Study 2: MTTF vs. Area, Power Insights on Conventional EM Fixes Conclusions

Electromigration in Interconnects

 Electromigration (EM) is the gradual displacement of metal atoms in an interconnect

I_{avg} causes DC EM and affects power delivery networks

Irms causes AC EM and affects clock and logic signals

EM Lifetime

- EM degrades interconnect lifetime
- Black's Equation calculates lifetime of interconnect segment due to EM degradation

$$t_{50} = \frac{A^* - E_a}{J^n} \cdot \frac{e^{-E_a}}{m}$$

- t_{50} median time to failure (= $log_e 2 \times MTTF$)
- A* geometry-dependent constant
- J current density in interconnect segment
- n constant (= 2)
- E_a activation energy of metal atoms
- k Boltzmann's constant
- T temperature of the interconnect

Parameters Affecting EM MTTF

Why Is EM Important Now?

ITRS 2011 data shows that EM will be a significant reliability issue

Examples of EM Guardband

To meet EM MTTF margin at given wire width upper bound
 – Reduce J_{rms} → reduce driver size → slower circuit

- To meet EM MTTF margin at given performance requirement
 - Increase $W_{wire} \rightarrow$ increase capacitance, dynamic power

Outline

Motivation Previous Work Our Work Preliminaries Study 1: MTTF vs. F_{max} Study 2: MTTF vs. Area, Power Insights on Conventional EM Fixes Conclusions

To Meet EM Lifetime Requirements

Three major categories of prior work

EM MTTF modeling

- Black69 (Black's Equation)
- Liew89 (AC lifetime models)
- Lu07 and Wu12 (Joule heating)
- Architecture changes to mitigate EM
 - Srinivasan04 (RAMP)
 - Romanescu08 (core cannibalization)

 Synthesis and physical design (PD) techniques to reduce current density violations

- Dasgupta96 (limit J_{rms} violation at synthesis)
- Jerke04 (limit J_{rms} violation at PD)
- Lienig03 (post-route J_{rms} fixes)

Outline

Motivation Previous Work Our Work Preliminaries Study 1: MTTF vs. F_{max} Study 2: MTTF vs. Area, Power Insights on Conventional EM Fixes Conclusions

Key Idea

We quantify impact of EM guardband on performance (F_{max}), area and power

Approach

We conduct two studies

- 1. MTTF vs. F_{max} tradeoffs with fixed resource budget
- 2. MTTF vs. resources tradeoffs with fixed performance requirement

Assumptions

- –10 years = example default EM MTTF
- -Six testcases
 - Report three representative (AES, DMA, JPEG)

Key Contributions

- We are the *first* to quantify impacts of EM guardband on performance and resources by using PD flows
- We introduce EM slack as an accurate measure of potential performance improvements in different circuits at reduced MTTF requirements
 - Black's Equation cannot accurately quantify the impacts of EM-awareness in circuits
- We study how tightness vs. looseness of timing constraints determine area and power trends at reduced MTTF
- Our study flow/methodology can potentially be used by
 - architects and front-end designers to improve performance at no area cost
 - physical designers whose levers are conventional SI and EM fixing methods

Outline

Motivation Previous Work Our Work Preliminaries Study 1: MTTF vs. F_{max} Study 2: MTTF vs. Area, Power Insights on Conventional EM Fixes Conclusions

EM Slack

When EM violations occur

$$I_{rms,net} = C_{load} \cdot V_{dd} \cdot \sqrt{\alpha \cdot F_{max} \cdot \left(\frac{1}{t_{rise}} + \frac{1}{t_{fall}}\right)} > I_{rms,limit}$$

Black's Equation

$$MTTF = \frac{A^*(WH)^2}{I_{rms}^2} \cdot e^{E_a/_{kT}}$$

Theoretical limit of I_{rms,net}

$$I_{rms,net} \leq I_{rms,limit} \cdot \sqrt{\frac{MTTF_{default}}{MTTF_{reduced}}}$$

Basic Concept: EM slack of a net (units: mA)

 $EM_{slack,net} = I_{rms,net} - I_{rms,limit} \le I_{rms,limit}$

Significance of EM Slack

- Positive EM slack \Rightarrow potential for improved F_{max}
- If EM slack > 0, a part of it can be used to
 - increase I_{rms,limit} by reducing MTTF (from Black's Equation), and
 - improve F_{max} by using <u>SP&R knobs</u> (e.g., gate sizing) without causing EM violations

$$I_{rms,net} = C_{load} \cdot V_{dd} \cdot \sqrt{\alpha \cdot F_{max} \left(\left(\frac{1}{t_{rise}} + \frac{1}{t_{fall}} \right) \right)} > I_{rms,limit}$$

Outline

Motivation Previous Work Our Work Preliminaries Study 1: MTTF vs. F_{max} Study 2: MTTF vs. Area, Power Insights on Conventional EM Fixes Conclusions

Study 1: MTTF vs. F_{max}

- Study MTTF vs. F_{max} tradeoffs given upper bounds on area, temperature and #EM violations
- Setup
 - Three testcases: AES, DMA and JPEG
 - Two technology libraries: TSMC 45GS and 65GPLUS
 - Upper bounds
 - temperature = 378 K
 - area = 66% utilization
 - #EM violations = 25
 - Synopsys DesignCompiler and Cadence SOC Encounter flows
 - Thermal analysis using Hotspot

Automated Flow to Determine Fmax

Automated Flow to Determine Fmax

Derating LEF

We derate current density limits in technology Library Exchange Format (LEF) file

Automated Flow to Determine Fmax

Binary Search for F_{max}

- Increase frequency by ∆step until some constraint is violated
- Perform binary search between the current F and the last feasible F to find F_{max}

Automated Flow to Determine F_{max}

Flow to Fix EM Violations

Automated Flow to Determine Fmax

- F_{max} scaling is not uniform across designs and at reduced MTTF as suggested by Black's Equation
- F_{max} scaling is determined by the EM slack in each design at each MTTF requirement
- \succ Large F_{max} improvements may be setup artifacts

EM slack (not timing slack) limits performance scaling due to AC EM

EM slack determines F_{max} at fixed resources
 % of positive EM slack is usable to improve F_{max} by

reducing MTTF requirement

> EM violations in critical paths lead to positive EM slack

Area and temperature can be dominating constraints at lower MTTF requirements

 ➤ Area limits F_{max} scaling for MTTF ≤ 7 years (DMA)
 ➤ Area upper bounds are violated for MTTF ≤ 6 years; Temperature upper bounds are violated for MTTF ≤ 3 years

Outline

Motivation Previous Work Our Work Preliminaries Study 1: MTTF vs. F_{max} Study 2: MTTF vs. Area, Power Insights on Conventional EM Fixes Conclusions

Study 2: MTTF vs. Area, Power

Study MTTF vs. area and power tradeoffs at a fixed performance requirement

Setup

- DMA at 2000 MHz (2ps slack after SP&R at 45nm)
- AES at 1100 MHz (1.6ps slack after SP&R at 45nm)
- JPEG at 850 MHz (93ps slack after SP&R at 45nm)
- Two technology libraries: TSMC 45GS and 65GPLUS

 Large positive timing slack at MTTF = 10 years can lead to smaller area when MTTF requirement is reduced
 Large positive timing slack at MTTF = 10 years can lead to smaller power when MTTF requirement is reduced

Area and power can decrease as MTTF requirement is reduced for designs with loose timing constraints

 Small positive timing slack at MTTF = 10 years can lead to increase in area as MTTF requirement is reduced
 Small positive timing slack at MTTF = 10 years can lead to increase in power as MTTF requirement is reduced

Outline

Motivation Previous Work Our Work Preliminaries Study 1: MTTF vs. F_{max} Study 2: MTTF vs. Area, Power Insights on Conventional EM Fixes Conclusions

Conventional EM Fixes and MTTF

- Study how conventional SI and EM fixing methods affect area and performance at reduced MTTF requirements.
- Setup
 - Sweep MTTF from 10 years down to 1 year
 - Apply per-net NDRs, driver downsizing and fanout reduction fixes
 - Study using AES, JPEG and DMA testcases
 - Two technology libraries: TSMC 45GS and 65GPLUS
 - Insights are very instance-, technology/libraryand flow-specific

> Fixing EM violations using NDRs can be effective in improving F_{max} only till MTTF = 7 years

- \succ % increase in F_{max} is less than 5%
- \gg % increase in area is ~2%

NDRs can be more effective knobs to increase F_{max} with less increase in area

- Fanout reductions to fix EM can increase F_{max} by 3% at the cost of 1.86% increase in area
 Drive downsizing to fix EM can increase F_{max} by 2.5% at
 - the cost of 2% increase in area

Outline

Motivation Previous Work Our Work Preliminaries Study 1: MTTF vs. F_{max} Study 2: MTTF vs. Area, Power Insights on Conventional EM Fixes Conclusions

Conclusions

We study and quantify potential impacts of improved EM-awareness in designs through two basic studies

Our key observations

- Study 1: Available performance scaling (up to 80%) from MTTF reduction is dependent on *EM slack*
- Study 2: Area and power can decrease when MTTF is reduced in designs with loose timing constraints
- Additional studies: NDRs can be more effective in increasing performance ~5% at the cost of 2% increase in area for MTTF up to 7 years

Ongoing work

- EM reliability requirements in multiple operating modes
- Combined impacts of EM and other back end of the line reliability mechanisms on interconnect lifetime

Acknowledgments

Work supported by IMPACT, SRC, NSF, Qualcomm Inc. and NXP Semiconductors **Thank You!**

Hotspot Setup

- We use Hotspot5.0 calibrated with thermal package from Qualcomm Inc.
- We perform two kinds of modeling
 - Without heat spread and heat sink when profiling single block of AES, JPEG or DMA (area in µm²)
 - With heat spreader and heat sink when profiling 50x50 blocks of AES, JPEG, or DMA in an area of ~5mm²
- We get same values of temperature for a single block from both these methods