

RExCache: Rapid Exploration of Unified Last-level Cache

@unsw

building the foundations for a better future

Su Myat Min, Haris Javaid, Sri Parameswaran University of New South Wales 25th Jan 2013 ASP-DAC 2013

Introduction

 Last-level cache plays an important role in avoiding expensive memory accesses to the off-chip memory system
[Arkaprava2007 at Micro,Wang2009 at IEEE NAS]

CacheSize Last-level Cache Configurations 4 MB Associativity e How do we determine 2 MB them accurately and 1 MB rapidly? 512 KB ar 16 A 04 C 256 KB 8Δ Which Cache Size? Which Associativity? Which Line Size? 64 KB 2 A 8 B 32 KB 1 A 4 B 16 KB 8 KB

4 KB

Target System

- Uniprocessor system with multi-level cache hierarchy
- Unified off-chip last-level cache
- Assumption: On-chip caches are already preconfigured

Outline

- Motivation
- Related Work
- Proposed Approach
 - RExCache Framework
 - Execution time and Energy estimators
- Experiment Results
- Conclusion

Motivation

 g721enc application running on uniprocessor system for different last-level cache (L2 cache) configurations

Related Work

- Cycle accurate simulators [PTLSim, Xtensa ISS, etc.]
 - Very slow to explore hundreds of cache configurations
- Trace-driven cache simulation [Sim-Cache, CacheSim, Dinero, SuseSim, etc.,]
 - Mostly provide hit/miss information
 - cannot capture whole application behavior
- Analytical models by simultaneous execution of on-chip L1 & L2 caches [Gordon-Ross et. al. ,2011 and Silva-Filho et. al. , 2011]
 - Quickly predicts cache performance but obtain inaccurate output
- Single stack-based technique for two-level caches [Zhang et. al.,2011]
 - The technique focus only on two-level cache hierarchy
- Our approach:

Rapid exploration of unified last-level cache

Proposed Approach

RExCache Framework

(Framework for Rapid Exploration of Unified Last-level Cache)

- integrates cycle accurate simulator and trace-driven cache simulator
- Execution Time Estimator
- Energy Estimator

RExCache Framework

Base System has on-chip caches and largest last-level cache

Base System has on-chip caches and largest last-level cache

Application Execution (AE) Profile of Cache Exploration

Cache Profile

- MR1 Mem Non-Access
- MR2 Mem Non-Access
- MR3 Mem Non-Access
- MR4 Mem Non-Access
- MR5 Mem Access
- MR6 Mem Access
- MR7 Mem Non-Access
- MR8 Mem Non-Access
- MR9 Mem Access
- MR10 Mem Access

. . .

MR1 LCI period (20 cycles) MR3 LCI period (110 cycles) MR5 LCI period (70 cycles) MR8 LCI period (20 cycles) ...

AE Profile

MR stands for Memory Request.

LCI Profile

- [No. of Mem
s x Cache-HL1
Cache-ML]
220 cycles
5 * 4 + 4 * 1 * 30
CIES
ower x EI]
neE
· / · 7 * 1 * 20
4 + 7 1 30
es
ne Size

LCI Profile

Results & Analysis

Execution Time Estimator

RExCache

ET = LCIcycles + [No. of Mem Non-Access x CacheHitLatency] + [No. of Mem Access x CacheLineSize x CacheMissLatency]

 Traditional Method (from "Rapid Runtime Estimation methods for pipeline MPSoCs") [extended for L2 Last-level cache]

ET = [L1-Hits x L1-HitLatency] + [Total Instructions x Avg.NCPI] + [L2-Hits x L2-HitLatency] + [L2-Misses x L2-LineSize x L2-MissLatency]

NCPI : Net Clock Cycles Per Instruction

Avg.NCPI : Obtained from cycle-accurate simulations from a subset of cache configurations

Exploration Time Comparison

Арр.	Cycle-	Traditional			RExCache			
	Accurate Simulator	TGP	CE	Total	TGP	CE	Total	
adpcmD	2h	14.3m	8s	14.4m	20s	8s	28s	
jpegE	10h	2h	13s	2h	2m	13s	2.3m	
jpegD	4h	30.7m	8s	30.8m	42s	8s	50s	
g721E	7d	1d	6m	1d	35m	6m	41m	
g721D	8d	1d	6m	1d	37m	6m	43m	
mpeg2E	116d	16.4d	16m	16.7d	9h	16m	9.3h	
mpeg2D	32d	4.1d	8m	4.1d	3h	8m	3.1h	
H.264E	257d	35.8d	2h	35.9d	19h	2h	21h	

TGP : Trace Generation and Processing

- includes the time to compute average NCPI in Traditional Method

- includes the time to compute LCI cycles in RExCache

CE : Exploration of Cache Configurations

Detailed Analysis of Execution Time and Energy Estimators

	RExCache				Traditional estimators Extended to L2 cache			
Арр.	Exe.	Time	Energy		Exe. Time		Energy	
	Abs. Err.(%)		Abs. Err(%)		Abs. Err(%)		Abs. Err(%)	
	Avg.	Max.	Avg.	Max.	Avg.	Max.	Avg.	Max.
adpcmE	0.00	0.00	18.63	30.42	0.67	4.44	19.34	31.03
adpcmD	0.02	1.73	19.69	31.54	1.08	9.24	21.28	33.38
jpegE	0.26	1.17	13.64	23.38	2.46	4.19	14.31	23.99
jpegD	0.03	0.29	12.38	22.90	2.00	2.91	13.15	23.63
g721E	0.00	0.57	13.76	27.04	3.90	11.98	13.68	25.50
g721D	0.00	0.01	13.69	27.75	3.16	13.73	13.92	26.69
mpeg2E	0.00	0.01	17.25	26.65	0.23	1.05	18.18	27.58
mpeg2D	0.01	0.43	16.66	26.55	0.22	1.75	17.64	27.71
H.264E	0.11	0.40	13.63	22.67	1.24	3.26	14.10	23.40

Execution Time Analysis

Energy Consumption Analysis

Conclusions

- Proposed rapid exploration of unified last-level cache
- To avoid slow cycle-accurate simulations, proposed RExCache Framework:
 - integrates cycle-accurate and cache simulator
 - includes fast and highly accurate performance estimator
 - includes fast and reasonably accurate energy estimator
- Suitable last-level cache configuration selected by RExCache:
 - up to 50% execution time reduction w.r.t common cache
 - up to 35% energy reduction w.r.t common cache
- Exploration time for possible 330 configurations
 - RExCache took only a few hours
 - Cycle-accurate took several days
 - Traditional method took 98% more than RExCache

Thank you Q & A

Intel's Merom