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Summary

* Introduction

* Design of Double-and-Add RNS (DARNS).
— Direct Variable Multi-Moduli Architecture (Direct VMAS).
— Double-and-Add Multi-Moduli Architectures (Arithmetic VMAS).

— Reverse Variable Multi-Moduli Architecture (Reverse VMAS)

- DARNS in Elliptic Curve Cryptography (ECC).
- Experimental Results.

»  Conclusions and Future work.
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Simple Power Analysis: The Identification of
computations and instructions used by analyzing the
power wave using the characteristic signature

/* Square-and-Multiply Algorithm in RSA
M: message to encrypt,

N: public modulus,
e: a b-bit secret key
Ciphertext C=Mé¢mod N => ¢
*/
C=M
forifrom 1to b-1do
C=C*C(mod N)
if d.= 1 then
C=C*M (mod N)
return C
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Introduction: Types of Side Channel Attacks

- Differential Power Analysis: Uses statistical
analysis by correlating the predictions with the actual
power measurements.
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Introduction: Elliptic Key Cryptography

- Elliptic Curve Cryptography (ECC) is a public key cryptographic
algorithm where senders will use a private key to encrypt the data and
receivers will use the public key for decryption.

- The benefits of the ECC is that it uses smaller key size with faster
computation to suit small devices in comparison with the contender RSA

Algorithm 1: Double-and-Add

1 Input: G, k
2 Output: P, = k.G

3Q<-G
4 forifroml-2to 0 do
/+ Double portion x/
S Q<-2Q
6 if d; == I then
2 /+ Add portion *x/
G / 7 Q<-Q+G
g y 4
P S\, -
Biy’=a+az+b sho i 9
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Introduction: Elliptic Key Cryptography vulnerability % W
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* Unprotected Double-and-Add in ECC generates distinctive power
patterns hence successfully attacked using SPA and DPA*.

- State-of-the-art solutions: l

RANDOM-1 DOUBLING' PpousLiNG *PranDOM-1

RANDOM-1 ADD Pabp *PranDoM-2

*K. Itoh, T. Izu, and M. Takenaka, “Address-Bit Differential Power Analysis of Cryptographic Schemes OK-ECDH and
OK-ECDSA,” in CHES, 2003.
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Introduction: RNS Background % 0
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*In Residue Number Systems a binary number is converted in parallel
into a set of residue words corresponding to the remains of moduli
values:

G |m
R C
{Tnl,ﬂlg,ﬂlg}
|Gl |Glms
I Gl '

ARITHMETIC

‘ REVERSE i

Q
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Introduction: Residue Number System Example

» For a moduli set {15,16,17} and an input G = 33. One Doubling
and addition operation is @ = 33 x 2 + 33 = 99,

- The binary solution requires large multipliers and adders in
comparison with the RNS solution. 33

'

DIRECT
33 133]15=3 f |33]4,=16
* t |334¢=1 t
DOUBLING DOUBLING DOUBLING
DOUBLING - —_ =
15 16 17 |
66 l | ;
£ ADDITION ADDITION ADDITION
ADDITION 13],=3
16~
|9]45=9 |31],,=14

REVERSE
99
99
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 We propose to use randomly controlled Multi-Moduli architectures
(MMASs) to obfuscate the secure information from the power profile.

+  The MMAs have demonstrated high performance.

33

'

{ DIRECT MMA
133|156 |33]19=14
t [33]15=1 t
®- DOUBLING MMA DOUBLING MMA DOUBLING MMA
—¢ 13~ 16~ 19~ |
ADDITION MMA ADDITION MMA ADDITION MMA
13]16=3
18]43=5 23]49=4
® REVERSE MMA
99

Random_Control=1
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Summary

Design of Double-and-Add RNS (DARNS).
— Direct Variable Multi-Moduli Architecture (Direct VMAS).
— Double-and-Add Multi-Moduli Architectures (Arithmetic VMAS).

— Reverse Variable Multi-Moduli Architecture (Reverse VMAS)
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* The proposed DARNS architecture et
has three major components: 1) G SPN—

ENABLE

DIRECT; 2), ARITHMETIC; and 3), | s

DARNS Architecture

: MUX
g T
REVERSE. ; - m i
VMA direct VMA direct '
control R (27 -3 ) —Q{Z“—1,2“+3}
n+

ENABLE ENABLE

n+1

Ent(ol R i

VMA adder
Qo ~ 1,27~ 3

control_K

MUX control K | ——

|eoniol R -O vMA adder control §-Q) vMA adder
274+ 12" + 3 (2" —1,2"—3
: g Ror n
:ARITHMETIC

ENABLE

VMA reverse
s
200 g

4n

| REVERSE

Q=output
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DARNS: Direct Architecture % i
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* Direct RNS

* A standard direct Single Modulo A = {2"+f} Architecture (direct SMA), f
odd, transforms an integer G with m-bit inputs ({go, 91..., 9m—1}) into a residue
word R of a-bit outputs ({ro,71,...,7a—1}) With a = [log2(A)].,a=n,a=n+1 for
modulo A = {2" — f} and A = {2™ + f}, respectively.

G = {907917"'797%—1} = R = {7“0,7“1,"',7°a_1}
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DARNS: Direct Architecture 2. @
e
COR G=input  control_R - Stage 1: The pre-computation of the inputs is
Lm carried out to obtain the non-common and
A, common bits as well as the required correction
artitioning + weight
selection factor COR.
- Grouping
S0 e Lz Tz mo
= T = 3]
(2:1)-MUX " =0
1 (A) ,
y o | T(A%) - ”092(Tm0$ + 1)-‘
CSA+CPA
N TALTA) N
() . d i
g | | Final Converter - Stage 2: The calculation of |G, = [T#4)]
°% T . is carried out by means of a memory-less Final
v Converter (FC).
Gla, or [Gla,

H. Pettenghi, L. Sousa, and J. Ambrose, “Efficient implementation of multi-moduli architectures for binary-to-rns
conversion,” in Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific, 2012, pp. 819 —824.
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Stage 1

Stage 2

DARNS: Adder/Doubling Architecture

X+Y]g, or [X+Ylg,

X Y control_R
L n+1 4 n+1
A A
Partitioning + weight Partitioning + weight
selection selection
Grouping Grouping
0 rz@Lz LB z| BLL 2t L (8)
(2:1)-MUX (2:1)-MUX
- 2(B) '(B)
A\ ZI A\ Zl
CSA+CPA
TEM n+2 B, -B,
LN+l 4 N+2 ] i n+2 v n+2
CPA (2:1)-MUX
n+2 . n+2
P
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* The stage 1 of direct VMA is applied twice to
derive X +Yy , witX = {z9,24,...,2,} and
Y = {yﬂayla "'Jyﬂ}:

X+Y = T(B)—Z 27 27

=0

n
?, j=0

T(Bs) _ (B;), if T(Bi) > B,
| X + Y|Bi -

T(Bi) , otherwise,

T'B) « 2 x (B;)

* The last stage consists on a subtraction of the

modulo value selected by a MUX. The modulo
adder computation is carried out by means of one

CPA and a MUX to select the correct arithmetic
operation.
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* The Single Modulo Architecture (SMA) reverse converter with moduli
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DARNS in ECC: Example

control_R=0
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G=input=127

127=000001111111 4= 12

{227 2n 41}

— G =127
n=3 {2271,: on | 3}

12 127=000001111111 4~ 12

\

127=000001111111 A

_ VMA direct
{2 —3,2" +1} = {5,9) 121, =2 &9 :
{2m — 1,27 + 3} = {7,11} 1 — )
1127, = 63 + 4 o4
0 MUX 0
0=0000 6=0110 0=000 2=0010 4

+ 3

343 13
VMA adder
{7.,5}

Ry = |62 + 62|, = 62

0

control_K

R3=[6+6|, =1

control /K:

63=1111114" 6

0=000000

Vi=6 u1 = |6 X 62'55 =42 R3=1=0001 R;=62=111110
Vo =44 Ug=|44><4|55=11
‘/3 - US - |5 % 1|55 - 5 VMA reverse

{64,7,9}
{64,5,11}

254=000011111110

—> | | 220 = 42+ 11+ 55564 = 3 x 64 = 192

2211.
my Q=output=254
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« This paper presents a novel Multi-modulo parallel RNS
implementation which chooses different moduli sets randomly.

 Such a randomness and parallelization prevents Differential
Power Analysis (DPA), Simple Power Analysis (SPA) during the
Double-and-Add operation of the Elliptic Curve Cryptography.

- DPA and Cross Correlation analysis are demonstrated to prove
the security of our DARNS architecture.

«  Qur architecture is not only secure, but performs better for large
number of inputs, consume less power, benefiting from the
inherent properties of the RNS.
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