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Introduction: Cryptography Background

Key
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Introduction: Types of Side Channel Attacks 

• Simple Power Analysis: The  Identification  of 
computations  and  instructions  used  by  analyzing  the 
power wave using the characteristic signature

• ./* Square‐and‐Multiply Algorithm in RSA

M: message to encrypt, 

N: public modulus, 

e: a b‐bit secret key 

Ciphertext C = Me mod N => exponentiation

*/

C=M

for i from 1 to b‐1 do

C= C*C (mod N)

if di = 1 then

C = C*M (mod N)

return C 

b = 10101010
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Introduction: Types of Side Channel Attacks 

• Differential Power Analysis: Uses statistical 
analysis by correlating the predictions with the actual 
power measurements. 
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Introduction: Elliptic Key Cryptography

• Elliptic Curve Cryptography (ECC) is a public key cryptographic 
algorithm where senders will use a private key to encrypt the data and 
receivers will use the public key for decryption.

• The benefits of the ECC is that it uses smaller key size with faster 
computation to suit small devices in comparison with the contender RSA

Pk = k · G

k∈[0, n −1]

G
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Introduction: Elliptic Key Cryptography vulnerability

• Unprotected Double-and-Add in ECC generates distinctive power 
patterns  hence successfully attacked using SPA and DPA*.

• State-of-the-art solutions:
– Masking the power pattern (Software/algorithms),
– New algorithms,
– Software balancing,
– Hardware implementation.

• These solutions either involve significant algorithmic/software 
modifications or incurs high cost.

*

PDOUBLING

ADD

DOUBLING

PADDPADD +PRANDOM-2

PDOUBLING +PRANDOM-1

ADD

DOUBLINGRANDOM-1

RANDOM-1
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Introduction: RNS Background

•In Residue Number Systems a binary number is converted in parallel
into a set of residue words corresponding to the remains of moduli
values: 

DIRECT

DOUBLING
ADDITIONADDITION

ARITHMETIC
DOUBLING
ADDITION

REVERSE

G

Q

|G|m1

|G|m2

|G|m3

|G*|m2 |G*|m3|G*|m1

ARITHMETIC ARITHMETIC
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Introduction: Residue Number System Example

DOUBLING

ADDITION

33

66

99

DIRECT

DOUBLING

ADDITION

DOUBLING

ADDITION

DOUBLING

ADDITION

REVERSE

33

99

|33|15=3

|33|16=1

|33|17=16

|6|15=6 |2|16=2 |32|17=15

|3|16=3
|31|17=14|9|15=9

• For a moduli set {15,16,17} and an input    3    . One Doubling 
and addition operation is Q=    33x2+33=99.

• The binary solution requires large multipliers and adders in 
comparison with the RNS solution. 

• However, it is needed to mask the doubling and add operation!.
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Introduction: Our solution for double and add in RNS

• We propose to use randomly controlled Multi-Moduli architectures 
(MMAs) to obfuscate the secure information from the power profile. 

• The MMAs have demonstrated high performance. 

DIRECT MMA

DOUBLING MMA

ADDITION MMA

REVERSE MMA

33

99

|33|15=3

|33|16=1

|33|17=16

|6|15=6 |2|16=2 |32|17=15

|3|16=3
|31|17=14|9|15=9

DOUBLING MMA

ADDITION MMA

DOUBLING MMA

ADDITION MMA

Random_Control=0

DIRECT MMA

DOUBLING MMA

ADDITION MMA

REVERSE MMA

33

99

|33|13=6

|33|16=1

|33|19=14

|6|13=12 |2|16=2 |28|19=9

|3|16=3
|23|19=4|18|13=5

DOUBLING MMA

ADDITION MMA

DOUBLING MMA

ADDITION MMA

Random_Control=1
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DARNS Architecture

VMA directVMA direct

VMA reverse
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G=input

control_R control_R
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REVERSE
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control_R control_R

control_R { 22n , 2n ±1}
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MUX

n+1 n+1n+1

n+1
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n+1
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VMA adder

VMA adder
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control_R { 2n − 1, 2n − 3}
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MUX

2n 2n2n
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control_K

adder

adder

2n

MUX MUX
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4n

4n
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MUX
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MUX

ENABLE

nn

ENABLE

MUX
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n+1 n 2n

Q

4n

n

• The proposed DARNS architecture 
has three major components: 1), 
DIRECT; 2), ARITHMETIC; and 3), 
REVERSE. 

• Control_R signal selects randomly the 
moduli sets.

• Control_K is the (secret key)-bit per 
iteration, which selects the 
doubling/addition operations.

• DARNS for a couple of moduli sets                               
_________and_________, with 
_____and _____.
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DARNS: Direct Architecture

• Direct RNS 
• A standard direct Single Modulo                   Architecture (direct SMA), f

odd, transforms an integer G with m-bit inputs          ,               into a residue 
word R of a-bit outputs                ,      with                  ,       ,             for 
modulo________ _and________,_,, respectively. The input value G is 
converted from                           into: 

• In case of direct Variable Multi-moduli Architectures (direct VMAs), several 
moduli shares the common hardware and they can be selected in series by 
a control. Let us denote this q-set of moduli as                . Thus, the 
equation is needed to be applied q times in order to obtain     . 
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DARNS: Direct Architecture

Final Converter

G=input
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ta

ge
 1 Grouping

CSA+CPA

S
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ge
 2

(2:1)-MUX

COR

or

a

m

control_R

'0'

Partitioning + weight 
selection

|G|A1
|G|A2

T(A
i
) (A

i
)τ

z'(A1
) z'(A2

)

z'(Ai
)

z''l l l

l

(a)

• Stage 1: The pre-computation of the inputs is 
carried out to obtain the non-common and 
common bits as well as the required correction 
factor COR.

• Stage 2: The calculation of ______________is 
is carried out by means of a memory-less Final 
Converter (FC).
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DARNS: Adder/Doubling Architecture
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(b)

• The  stage  1  of  direct  VMA  is  applied  twice  to 
derive  ____ _,, with         and 
______________:

• The  last  stage  consists  on  a  subtraction  of  the 
modulo  value  selected  by  a  MUX.  The  modulo 
adder computation is carried out by means of one 
CPA  and  a MUX  to  select  the  correct  arithmetic 
operation. 
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DARNS: Reverse Architecture

• The reverse VMA can be easily derived by 
substituting the SMA direct and adders by the 
corresponding VMA ones previously presented. 
The addition of a control, control_R, to select the 
moduli set is required. 

• The Single Modulo Architecture (SMA) reverse converter with moduli 
set                    : 

SMA Direct

SMA adder

SMA adder

2n 2n 2n
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2n
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4n
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DARNS in ECC
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VMA directVMA direct
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DARNS in ECC: Example
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Experimental Results: Experimental Flow



technology
from seed

18th Asia and South Pacific Design Automation Conference (ASP-DAC 2013). Tokyo, Japan.

03/01/2012 22

Experimental Results
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Conclusions

• This paper presents a novel Multi-modulo parallel RNS 
implementation which chooses different moduli sets randomly. 

• Such a randomness and parallelization prevents Differential 
Power Analysis (DPA), Simple Power Analysis (SPA) during the 
Double-and-Add operation of the Elliptic Curve Cryptography. 

• DPA and Cross Correlation analysis are demonstrated to prove 
the security of our DARNS architecture. 

• Our architecture is not only secure, but performs better for large 
number of inputs, consume less power, benefiting from the 
inherent properties of the RNS. 
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Thank you 

Questions?

hector@sips.inesc-id.pt


