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Background 

• The mismatch between electrical energy generation and 

consumption 

• Peak hours: high energy consumption 

– Energy generation fluctuates 

 within a much smaller range 
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Figure 1. Electrical Energy Generation vs. Demand. 
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Background – Demand Side Management 

• Time-of-day Pricing Policy 

• Demand Side Management  

is required 

– Method 1: Directly shifting 

residential load demand from 

peak hours to off-peak hours 

– This is limited because many 

tasks are not transferrable in 

time 

– Method 2: Electrical Energy 

Storage (EES) System 
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Figure 2. Daily Time-of-Day Energy Pricing. 

Figure 3. Demand Side Management. 



Background – HEES Systems 

• State-of-the-art EES systems are homogeneous 

• The desirable features of an ideal EES system 

– High charge/discharge efficiency 

– High energy density 

– Low cost per unit capacity 

– Long cycle life 

• None of the existing EES elements can simultaneously fulfill all the 
desired features 

• A novel technology: Hybrid EES systems 

– Exploit the strengths of each type of EES element and hide their 
weaknesses 

– There lacks a practical analysis of HEES systems’ profitability and a proper 
design methodology to maximize their profits 



Background – Practical Factors 

• Rate capacity effect 

– The charge loss rate inside a battery increases superlinearly with the increase of 

battery discharge current. The equivalent current:  

 

 

– Peukert’s constant k: reflects the efficiency of the discharging process 

– Lead-acid: 1.3 to 1.4; Li-ion: around 1.1 

 

• Unit cost of EES elements 

– Supercapacitor: $20-50/Wh; lead-acid: $0.1-0.2/Wh  

• Power losses due to power conversion circuits 

– Internal resistance, switching power losses, etc. 

 

𝐼𝑒𝑞 = (
𝐼𝑑𝑖𝑠𝑐 ℎ
𝐼𝑟𝑒𝑓

)𝑘𝐼𝑟𝑒𝑓  (1) 
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Problem 
• A home user wants to build a HEES system: how to maximize 

its return on investment (ROI)? 

• Taking into consideration: 

– Pricing policy 

– Capital cost of EES elements 

– Maintenance cost 

– HEES system efficiency 

– HEES system lifetime 

– Energy density 

– Investment discount factor (considering time-value of money) 
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Proposed Solution 

• Step 1: Maximize the daily energy cost saving 

– Given specification of the HEES system 

– Controls the charging and discharging of each EES bank 

– Further improvement: adding limits on the depth of 

discharge (DoD) for lifetime extension 

• Step 2: Find the optimal design and specification of 

the HEES system to maximize annual profit 

– Under monetary budget constraint and volume constraint 

 



System Overview 

• The HEES system 

– HEES banks + power conversion circuits 
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Figure 4. HEES System Structure. 



Daily Cost Saving Problem 

(DCS Problem) 
Given:  

1) Battery capacity (in Ah): 𝑄𝑥 , 𝑄𝑦  (𝑥 stands for Li-ion and 𝑦 stands 

for lead-acid as a case study in this paper); 

2) Battery’s terminal voltage: 𝑉𝑏𝑎𝑡 ; 

3) The 24-hour electrical energy price: 𝑟𝑖 , 𝑖 = 1,… ,24. (We define the 

peak hours index set as 𝑃𝐾 =  11,12, … ,22 , and base hours index 

set as  𝐵𝑆 = {1,2, … ,10,23,24}); 

4) Residential load power profile 𝑃𝑖
𝑙𝑜𝑎𝑑 , 𝑖 = 1,… ,24; 

5) Batteries’ rate capacity effect coefficients 𝑘𝑥 , 𝑘𝑦 ; 

6) DC-AC converters’ power conversion efficiency: 𝜂. 

Find: Discharge current 𝑥11 , … , 𝑥22 , 𝑦11 , … , 𝑦22  of two battery banks 

during peak hours. Indices 11 to 22 indicate peak hours, from 10:00 AM 

to 9:59 PM. 
 



DCS Problem (cont’d) 
Maximize: The daily energy cost saving: 

𝐷𝐶𝑆 =  𝑟𝑖𝑃𝑖
𝑙𝑜𝑎𝑑

24

𝑖=1

−  𝑟𝑖(𝑃𝑖
𝑙𝑜𝑎𝑑 +

𝑥𝑐 + 𝑦𝑐
𝜂

∙ 𝑉𝑏𝑎𝑡 )

𝑖∈𝐵𝑆

−  𝑟𝑖 𝑃𝑖
𝑙𝑜𝑎𝑑 − 𝜂(𝑥𝑖 + 𝑦𝑖)𝑉𝑏𝑎𝑡  

𝑖∈𝑃𝐾

 

=  𝑟𝑖𝜂 ∙  𝑥𝑖 + 𝑦𝑖 𝑉𝑏𝑎𝑡
𝑖∈𝑃𝐾

−  𝑟𝑖
𝑥𝑐 + 𝑦𝑐

𝜂
𝑉𝑏𝑎𝑡

𝑖∈𝐵𝑆

 

(2)  

where 𝑥𝑐 =
1

12
 (

20𝑥𝑖

𝑄𝑥
)𝑘𝑥

𝑄𝑥

20𝑖∈𝑃𝐾 , 𝑦𝑐 =
1

12
 (

20𝑦𝑖

𝑄𝑦
)𝑘𝑦

𝑄𝑦

20𝑖∈𝑃𝐾 . 

Subject to:  

1) Battery capacity constraint: 

 (
20𝑥𝑖
𝑄𝑥

)𝑘𝑥
𝑄𝑥

20
𝑖∈𝑃𝐾

≤ 𝑄𝑥 ,  (
20𝑦𝑖
𝑄𝑦

)𝑘𝑦
𝑄𝑦

20
𝑖∈𝑃𝐾

≤ 𝑄𝑦  (3)  

where 
𝑄𝑥

20
 and 

𝑄𝑦

20
 are the reference discharge current. 

2) Load power constraint: 

𝜂 𝑥𝑖 + 𝑦𝑖 ∙ 𝑉𝑏𝑎𝑡 ≤ 𝑃𝑖
𝑙𝑜𝑎𝑑 , 𝑖 = 11~22 (4)  
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DCS Problem (Simulation Results) 

• DCS problem is a convex optimization problem 

– It has convex objective function and convex inequality constraints 

– Solved optimally in polynomial time using standard optimization tools 

• fi(Qx,Qy): max saving of the ith day 

• Simulation Results 

– Maximum annual cost saving 

F(Qx,Qy)  by summing up the 

daily optimization results fi(Qx,Qy). 

– Stored in a look-up table (LUT) 

Figure 5. Maximum Annual Energy Cost Saving. 



DoD-Aware DCS Problem 

• Capacity degradation  

– Fully charging and discharging of batteries result 

in fast capacity degradation  

– Use only parts of the overall capacities extends 

service time superlinearly 

– Therefore, we add a maximum 

DoD limit Max DoD 



DoD-Aware DCS Problem (cont’d) 

• Solution: Find the equivalent original DCS problem fi(Qx,Qy) 
– fi(Qx, Qy, dx, dy): the maximum daily energy cost saving of the ith day 

– Proof: it is an underestimation to use the original DCS problem to 

approximate the DoD-aware result: 

 

• Estimation error 

 

 

 

• Annual cost saving:  
 

𝑓 𝑖 𝑄𝑥 , 𝑄𝑦 , 𝑑𝑥 , 𝑑𝑦 ≥ 𝑓𝑖(𝑑𝑥

1
𝑘𝑥𝑄𝑥 , 𝑑𝑦

1
𝑘𝑦𝑄𝑦) (5) 

 

Day Qx Qy dx dy fi (%) 

1 20 20 0.6 0.6 2.185 2.210 1.14 
100 5 20 0.6 0.6 1.361 1.382 1.45 
200 10 10 0.8 0.8 4.191 4.199 0.171 
300 20 5 0.6 0.9 1.469 1.478 0.563 

Table 1. Estimation error percentage of different days. 

𝐹  𝑄𝑥 , 𝑄𝑦 , 𝑑𝑥 , 𝑑𝑦 ≥ 𝐹(𝑑𝑥

1
𝑘𝑥𝑄𝑥 , 𝑑𝑦

1
𝑘𝑦𝑄𝑦) (6) 

 



• Equivalent to the annual ROI 

– With given monetary budget and system volume limit.  

• Profit = saving – cost  

• Taking practical factors into consideration 

– Cycle life 

– Energy density 

– Maintenance cost 

– Discount factor 

 

 

Amortized Annual Profit Maximization 



Amortized Annual Profit Maximization – 

Cycle Life & Energy Density 

• Battery’s lifetime: 80% 

capacity 

• Lifetime superlinearly 

extended with smaller DoDs. 

– 75% DoD – 4605 cycles 

– 100% DoD – 1560 cycles  

 

 

• Overall volume limits for 

residential usage. 

• Unit volume: volume divided 

by max stored energy. 

– Lead-acid – 12.5L/kWh 

– Li-ion – 2L/kWh  

 

 

Figure 6. Cycle life vs. DoD of Li-ion and Lead-acid batteries. 



Amortized Annual Profit Maximization – 

Maintenance Cost & Discount Factor 

• Replacing the aged battery 

bank with a new one: lower 

extra cost. 

– Different types of EES 

elements do not break down 

together 

• M: one-time maintenance fee 

of installation or replacement 

 

 

• Time value of money 

– The HEES system has a 

lifetime of 10 years or more 

• We must consider the 

discount factor when 

amortizing maintenance cost. 

– In terms of 5-year CD annual 

percentage yield of 2% 

 

 

 

 

𝛾 = 1 (1 + 2%) = 0.9804 

 



Amortized Annual Profit Maximization – 

Cost Calculation 

• Profit = saving – cost  

• Cost calculation: purchase cost + maintenance fee 

– Different types of EES elements do not break down together 

• Calculating the amortized annual cost: 

 

 
𝑎𝑥 + 𝑎𝑥 ∙ 𝛾−1 + 𝑎𝑥 ∙ 𝛾−2 + ⋯+ 𝑎𝑥 ∙ 𝛾−𝐿 𝑑𝑥 +1 = 𝑄𝑥𝑝𝑥 + 𝑀 (7) 

𝑎𝑥 =  𝑄𝑥𝑝𝑥 + 𝑀 ×
1 − 𝛾−1

1 − 𝛾−𝐿 𝑑𝑥 
 (8) 
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Amortized Annual Profit Maximization – 

Problem Formulation 
Given:  

1) LUT of high season energy cost saving and low season saving: 𝐻𝑇, 𝐿𝑇; 

2) Unit price of Li-ion and lead-acid batteries: 𝑝𝑥 , 𝑝𝑦 ; 

3) Unit volume of Li-ion and lead-acid batteries: 𝑣𝑥 , 𝑣𝑦 ; 

4) One-time maintenance fee: 𝑀; 

5) Discount factor 𝛾; 

6) Budget 𝐵 for initial investment and total volume limit 𝑉. 

Find: Li-ion capacity and maximum DoD 𝑄𝑥 , 𝑑𝑥 ; lead-acid capacity and maximum DoD 

𝑄𝑦 , 𝑑𝑦 . 

Maximize: amortized annual profit: 

Annual Profit = Annual Saving − Annual Cost 

= 𝐹  𝑄𝑥 , 𝑄𝑦 , 𝑑𝑥 , 𝑑𝑦 −  𝑄𝑥𝑝𝑥 + 𝑀 ∙
1−𝛾−1

1−𝛾−𝐿 𝑑𝑥 
−  𝑄𝑦𝑝𝑦 + 𝑀 ∙

1−𝛾−1

1−𝛾−𝐿 𝑑𝑦 
 

(9)  

Subject to:  

1) Budget constraint: 𝑄𝑥𝑝𝑥 + 𝑄𝑦𝑝𝑦 + 𝑀 ≤ 𝐵; 

2) System volume constraint: 𝑄𝑥𝑣𝑥 + 𝑄𝑦𝑣𝑦 ≤ 𝑉. 
 

Amortized 

annual cost 

From 

LUT 



Simulation Results 

• System setup: Lead acid and Li-ion battery banks 

• Different budget and volume  

– Compare the ROI of  

the HEES system with 

the average of these 

two EES systems 

– This improvement  

reaches 60% 

 
Figure 7. Maximum Annual Profit with Different Constraints. 



Simulation Results (Cont’d) 

• More simulation results with different (B,V) pairs 

– Diminishing marginal efficacy gain  

– Tight budget: lead-acid; small space: Li-ion 

 
Budget 

($) 

Volume 

(L) 

Lead-acid 

(kWh) 

Li-ion 

(kWh) 

Annual 

Profit ($) 

Annual 

ROI 

1000 50 3.86 0.81 34.88 3.49% 

3000 50 3.23 4.53 76.65 2.55% 

3000 100 7.38 3.58 103.87 3.46% 

3000 200 15.67 1.69 158.30 5.28% 

5000 30 0 8.84 112.12 2.24% 

5000 50 2.68 8.22 118.95 2.38% 

5000 100 6.84 7.25 145.93 2.92% 

5000 200 15.08 5.39 200.36 4.01% 

Table 2.  Annual Profit Results with Current Battery Prices. 



Simulation Results (Cont’d) 

• Changing constraints 

– Prediction of decreasing Li-ion battery price 

– $0.3/Wh in 2015 

• Annual profit prediction 

 

 

Figure 8. Maximum Annual Profit with Decreasing Li-ion Cost. 



Summary 
• This paper targets at providing a practical analysis of the profitability of a HEES 

system and a optimal design and management methodology to maximize the 

return of investment 

• Problem: maximizing return on investment (ROI) of residential HEES systems 

• Proposed two-step solution of HEES system design and management: 

– Daily cost saving maximization 

– Further taking lifetime into consideration by limiting maximum DoDs 

– Amortized annual saving maximization 

• Improvements: 

– An annual ROI of over 5% 

– 60% higher than the average ROI of lead-acid battery-only system and Li-ion battery-

only system 
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