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Introduction 

• Impact of new technologies on design is 

inferred from Design Rules (DRs) 

• Process of evaluation of DRs is largely 

unsystematic and empirical 

• Interaction of DRs with layouts, performance, 

margins, yield requires a fast and systematic 

evaluation method 
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Prior Work 

UCLA_DRE (ICCAD’09 ,TCAD’12) 
• A framework for early exploration of design rules, 

patterning technologies, layout methodologies, and 

library architectures 

• Standard cell-level evaluation 

Shortcomings 

• Not every change in cell area results in a 

corresponding change in chip area 

• Chip area can be affected by buffering and gate  

sizing to meet timing constraints 
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Chip-DRE: Chip level Design Rule Evaluator 

• Generates virtual standard-cell library 

• Employs semi-empirical and machine-learning-

based models 

• Good Chips per Wafer (GCPW) 

– unified metric for area, performance, variability 

and functional yield metrics 
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FLOW OF CHIP-DRE 
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Chip-DRE Flow 
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Chip-DRE Flow 

8 

Library Transistor-

Level Netlist 

Design Rule 

Set 

Cell Usage 

Statistics 

Cell Area Estimator Cell Delay Estimator 

Cell Delay-to-Area 

Machine Learning 

Estimation 

Delay scaling factor 
Initial  
cell-area 

Cell-area  
scaling 
factor  

Cell-Area to Chip-

Area Model 

Final cell-area 

DRE 

Chip Functional Yield 

Estimator 

Good Chips 

per Wafer 

Chip-area estimate 



NanoCAD Lab puneet@ee.ucla.edu UCLA 

Chip-DRE Flow 

9 

Library Transistor-

Level Netlist 

Design Rule 

Set 

Cell Usage 

Statistics 

Cell Area Estimator 

Initial  
cell-area 

Cell-area  
scaling 
factor  

Cell-Area to Chip-

Area Model 

Final cell-area 

DRE 

Chip Functional Yield 

Estimator 

Chip-area estimate 

Cell Delay Estimator 

Cell Delay-to-Area 

Machine Learning 

Estimation 

Delay scaling factor 



NanoCAD Lab puneet@ee.ucla.edu UCLA 

Chip-DRE Flow 
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Chip-DRE Flow 
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Cell Delay-to-Area Model  

• Addresses effect of timing optimization during 

physical synthesis 

• Predicts total cell-area scaling factor as cell-

delay is scaled 

• Based on Machine learning: Neural Network 

• Features:  
– number of instances on critical path, 

– average fanout, average interconnect length, 

– average delay and area of gates on critical path, 

– utilization and timing constraint, 

– ratio between area of critical paths to total cell area and 

– delay scaling factor 

12 



NanoCAD Lab puneet@ee.ucla.edu UCLA 

Cell Delay-to-Area Model  

• Addresses effect of timing optimization during 

physical synthesis 

• Predicts total cell-area scaling factor as cell-

delay is scaled 

• Based on Machine learning: Neural Network 

• Features:  
– number of instances on critical path, 

– average fanout, average interconnect length, 

– average delay and area of gates on critical path, 

– utilization and timing constraint, 

– ratio between area of critical paths to total cell area and 

– delay scaling factor 

13 



NanoCAD Lab puneet@ee.ucla.edu UCLA 

Chip-DRE Flow 
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Cell-area to Chip-area Model 

• Semi-empirical model to estimate chip-area in terms of cell-

area 

• Accounts for routing-limited designs 

• Coefficients fitted from P&R experiments 

– Use AEGR (Area estimation using Global Routing)  
• Estimate maximum utilization such that design is routable 

• Up to 7x speedup 
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Chip-DRE Flow 
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SAMPLE STUDIES USING 

CHIP-DRE 
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Well-to-active Spacing Rule Exploration 

• As Well-to-active spacing rule increases: 

– Cell area increases 

– Cell delay decreases due to well proximity effect 

• Dependence of GCPW and chip-area on the rule 

value is non-monotone! 

• Verified against PR runs, with max error of 3% 
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FinFET Fin-Pitch Study 

• Fin pitch effect on chip area of FPU 

• Fin pitch of 60nm through 100nm, cell area is 

steeply increasing while chip area is slightly 

changing 

• Error <5% 
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Local Interconnect-to-poly Spacing Study 

• As LI-to-poly space increases 

– Cell area increases 

– Cell delay changes: capacitive coupling decreases 

but diffusion capacitance may increase 

• Study shows cell-area increase dominates over 

potential chip-area decrease 
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Conclusion 

• Introduced Chip-DRE framework for fast and 

systematic evaluation of design rules and library 

architectures at chip-scale 
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Future Work 

• Include Power optimization 

• Extend to back-end rules and use Chip-DRE to 

develop DR and library projections for 5nm node 
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BACKUP 
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Cell Delay Estimation 
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Yield Estimator 

• Using DRE 

• Considers probability of survival from:  

– Overlay error: Normal distribution 

– Random Particle Defects: Critical area analysis + 

negative binomial yield model   

– Contact hole failure: Poisson distribution 
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Numeric Results for WPE Experiment 

GCPW (Chip-
DRE) 

Error 
[%] 

Chip-Area 
(SPR)  
[um2] 

Chip-Area 
(Chip-DRE) 

[um2] 

Cell-Area 
(Chip-DRE) 

Run-time 
(SPR) [min] 

Well-to-
active   

spacing 
[nm] 

667 0.8 30130 30364 28171 118 140 

681 0.8 29460 29709 28171 356 185 

612 -3 33913 33008 32527 240 200 

616 -2 33554 32787 32554 207 210 
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Variability 
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Variability  

• Current variability index: 

 

 

 

 

• Modeling delta W/L for each source of variability 

from literature (tapering, diffusion and poly 

rounding, CD variability) 
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Manufacturability  

• Manufacturability  Index  for  evaluating  DRs  is  

probability  of  survival  (POS)  from  three  major  

sources  of failure 

–  contact-defectivity (a.k.a. contact-hole failure); 

–  overlay error (i.e. misalignment between layers) 

coupled with lithographic line-end shortening (a.k.a. 

pull-back); 

– random particle defects. 
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Manufacturability (cont’d) 

• Contact hole yield follows poisson yield model: Y=Y0*e^(-lambda) 

      Lambda is average # failed contacts=# contacts * failure rate.  

• Overlay vector components in x and y directions are described by a 

normal distribution with zero mean & 3σ 

• We compute POS from overlay causing: failure to connect between 

contact and poly/M1/diffusion, gate-to-contact short defect, and 

always-on  device  caused  by  poly-to-diffusion  overlay  error 

• For failure  caused  by  random  particles, critical  area  analysis  for  

open  and  short  defects  at M1/poly/contact layers and short 

defects between gates and diffusion-contacts. 

• Yield=yield_contact*yield_overlay*yield3_randomParticles; 
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