ASP-DAC 2014

Normally-Off Technologies for Healthcare Appliance

<u>Shintaro Izumi</u>¹, Hiroshi Kawaguchi¹, Yoshikazu Fujimori², and Masahiko Yoshimoto¹ ¹Kobe University, Kobe, Japan, ²Rohm, Kyoto, Japan

Wearable Healthcare System

Proposed LSI: IHR monitor

IHR (Instantaneous Heart Rate)

= 60 / (newest R2R interval [s]) [bpm]

Applications :

- ✓ Heart Rate Variability (HRV) analysis
- ✓ Exercise intensity estimation

Constraints of Wearable Sensor

Normally-off strategy

Wireless communication

→ <u>Passive</u> NFC (Near Field Communication)

✤ Leakage current of data buffer $\rightarrow FeRAM$

Active current of analog front end

→Low-cost amplifier and ADC with noise tolerant algorithm

Passive NFC tag IC usage

Low speed, passive communication

System Architecture

Cortex M0 core

Data Communication

Robust IHR Monitor

Noises in wearable ECG

Our Approach for ECG Sensing

Architecture of IHR monitor

Die Micrograph and Specification

Measurement

Measurement

Comparison

	This work	ISSCC'12 [12]	VLSI'11 [13]
Technology	130 nm	130 nm	180 nm
Supply voltage	1.2V/3.0V	0.3-0.7V	1.2V
Frequency	24 MHz/32 kHz	1.7 MHz-2 kHz	1 MHz
MCU	Cortex M0 (32 bit)	8b RISC	n/a
On chip memory	129.75 kB	5.5 kB	46 kB
Total power for heart rate extraction	18.24 μW	19 µW	31.1 μW
Total current for heart rate extraction	<u>13.7 μ</u> Α	>27 µA	25.9 μA

Conclusion

The low-power wearable sensor using normally-off strategy was presented

The noise tolerant ECG processor chip was fabricated in 0.13µm CMOS

The robust IHR monitor using short-term autocorrelation algorithm consumes 1.21μA

The test chip totally consumes 13.7µA in IHR logging application

Acknowledgement

This research was supported by Ministry of Economy, Trade and Industry (METI) and the New **Energy and Industrial Technology Development Organization** (NEDO).

Thank you !

Performance Summary

Wavelet Transform (WT)

• Both time and frequency analysis

$$W_{f}(a,b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} \overline{\psi\left(\frac{x-b}{a}\right)} f(x) dx$$

• ψ : mother wavelet

(decide a kind of transform)

• Discrete WT (DWT) consists of digital filters

Wavelet Transform

- Sampling frequency = 128Hz
- A kind of Band Pass Filter (BPF)

R wave

SNR

- S : The peak-to-peak amplitude of QRS complex
- **N : Frequency-weighted noise power**
- a : Scale factor

MIT-BIH NST : http://www.physionet.org/physiotools/wag/nst-1.htm