Efficient Feasibility Analysis of
DAG Scheduling with Timing Constraints
In the Presence of Faults

I
Author:
Xiaotong Cul, Jun Zhang, Kaijie Wu, Edwin Sha.

College of Computer Science, Chongging Univ.,
Chongging, China.

Outline

Introduction

— Real-time systems and applications
— DAG scheduling
— Fault-tolerance

Problem Definition
Our Technique
Experiments
Conclusion

Real-Time systems and Applications

« Real-time systems and applications become more
common in our lives.

* The total correctness of an operation in real-time
systems depends upon:
— Its logical correctness
— the time it used

DAG Scheduling on Multi-Cores

* We usually use weighted directed acyclic graph
(WDAG) to model a set of tasks.

(TN TN T
1 5

4
Ts Te
4/ 2/

data dependency
Communication delay on
The same processor: 0
Different processors: 1

1 2345 67 8 910111213141516171819

Fig. A scheduled task set

Guaranteeing logical correctness

 However, the execution of a task may not be
successful sometimes.

* In real-time systems, finishing execution before
deadline Is important though, logical correctness is
fundamental.

* SO It Is necessary to provide fault-tolerance in
real-time schedules.

Fault-tolerant Mechanism

 Fault-tolerance is built into the schedule using two
types of backups:
— Active backup
— Passive backup

Pr T T T,

P, LI

Fault-tolerant Mechanism

For the sake of simplicity and energy conservation,
In our problem, we use passive backup to build
fault-tolerance following two rules.

— Backup is executed immediately after the error task;

— All tasks dependent on it are delayed.

P1

P2

M |t should be noted that the re-executed task may incur
error again.

Problem Definition

* |n multi-core systems, when given
— A scheduled task set with N related tasks, say
T={t1,12, ..., tn};

— the maximum number of faults that could occur during
the execution frame in the system, say X.

 Then, what’s the worst-case finish time(WCFT)
of this scheduled task set ?
« After finding WCFT, then the feasibility can be found, too.

Problem complexity

« EXxactly, if a task set consists of N tasks and is subject to a
maximum number of X faults, there would be
(N + X — 1)
X
distinct cases of fault occurrences.

* With a given fault occurrence, to compute the WCFT of the

scheduled task set, the time complexity will be O(N?),
which is the longest path of the scheduled task set.

* So, the total time complexity would be

N+X-—1)!

0 () V2
X'(N-1)!

If all cases are computed which is very exhaustive.

Properties of a task set

* For atask set modeled by WDAG, we add two
dummy vertices.

— Tsr : has an edge for each vertex that has no incoming
edge in original DAG,

— Tsk: has an edge for each vertex that has no outgoing
edge in original DAG.

— One task T's critical paths: the longest paths from Tsrto T
* Let Tc be the current task under investigation,

PS;. be the Parents Set of Tc,

AS;. be the Ancestors Set of Tc.

Obviously, PS{.CAS,,,

Some Critical Proofs

« Lemma 1: T is not in any critical paths of Tc, If
critical paths of Tc don’t change when T incurs x
faults, reducing x will not affect the finish time of

Tc.
| i1 Ly

Some Critical Proofs

 Lemma 2: if more than one task in ASTc incur
faults, a worse or status quo finish time of Tc can
be always be found by letting one task TEASTCc
iIncur all the X faults.

T, N T U

LT T, | T T YT

Theorem: there exists at least one critical task for
any task Tc such that if this task incurs all the
expected X faults, task Tc experiences its worst-case
finish time.

Preprocessing

* When given a scheduled task set and its original
data dependency modeled by DAG, there are two
kinds of dependency.

— data dependency T

— schedule dependency
1 2 3 4@8 9 10111213141516171819
N

L G
+p1 ?%

\\4/* Ts\2j

Fig. (G%edtask set

=~ e

(U]

Fig. (1) denden

Our Technique

« Base on our theorem, we can solve the problem
recursively.

W(Tsr,T2)=0
W(Tsr,T1)=0
WCFT(T,)=C;+X*Cy; CT(T)=T,
WCFT(T,)=C,+X*C;, CT(T,)=T,

WCFT(T1)+W(T1,T2)+C,

WCFT(T3)=Max =4 WCFT(T2)+W(T1,T2)+Cr,

BCFT(T3)+X*Cy,

—

Recursively solve the problem

W alicdstors gevof WSkl (ls) + W(Ts, T) + Crsx

> {WCFT(Ts) + W (Ts, T) + Crsg
(Tsk) + X * Creg

IF WCFT(Tg)= WCFT(Ts) + W(Ts, T) + Crex

Else Cm ‘Féie the problem

CT(T,)= dj@@grswely
C_%/ > task T,

Experimental Setup

« A common practice that bet WCFT using the task
with longest execution time could under-estimate
the finish time of the task set.

 We compare the WCFT obtained by our
algorithm with the finish time when all faults
occur on the task with the longest execution time.

e Six benchmarks from DSPstone are used.

Difference Ratio

2-deq

s 8 <

Number of Processors

=0.150.2
001015
m0.0501
= 0-0.05

Difference Ratio

Number of Faults

Number of Processors

=0.2025
w02503
u0.2-0.25
m0.150.2
" 0.1.0.15
m0o0501
®m0-005

oz

ol

Difference Ratio

oas

elliptic

Number of Faults

Number of Processors

m0.15-0.2
101015
=005 0.1
m0-0.05

Ditierence Ratic

Ditference Ratio

03
025

(=]
[%]

nis

=
-

.03
tl

motiv

§
8
e
]
]
E
5 g 7 =
3 -
% 49 12 =
Number of Fauks
latiir
]
=2
=)
g
(-
£ 5
© 3
- a ra F g
E g gp 3 =
Murmber of Faults
elf
o
g
, O
]
]
£
<

Number of Faults

m014 016
m0,1240,14
=0 1A we

m.0840.1

B O00-40.08
=00
OO

|00

Hl2>03
B 0200
= 015-0.2
[S
= 0.05-0.1
| 1-0.05

B0 14016
m0.120.12
"01012
20401
m0.050.08
B0CaA0.00
=0.020.04
20002

Conclusion

Given a task set with N tasks and X being the
maximum number of faults could occur, we
conclude that there exists at least one critical task
for each task.

A task undergoes it worst-case finish time when
one of its critical tasks incurs all X faults.

We propose a recursive algorithm which can
identify the critical task and the worst-case finish
time of a scheduled task set.

For a task set with N tasks and The algorithm takes
only O(N?).

Thank You!

