
Efficient Feasibility Analysis of

DAG Scheduling with Timing Constraints

in the Presence of Faults

Author:

Xiaotong Cui, Jun Zhang, Kaijie Wu, Edwin Sha.

College of Computer Science, Chongqing Univ.,

Chongqing, China.

Outline

• Introduction

– Real-time systems and applications

– DAG scheduling

– Fault-tolerance

• Problem Definition

• Our Technique

• Experiments

• Conclusion

Real-Time systems and Applications

• Real-time systems and applications become more

common in our lives.

• The total correctness of an operation in real-time

systems depends upon:

– its logical correctness

– the time it used

DAG Scheduling on Multi-Cores

• We usually use weighted directed acyclic graph

(WDAG) to model a set of tasks.

T1
3

T3
4

T5
4

T2
4

T4
5

T6
2

data dependency

P0

P1

P2

T1

T3 T6

T4 T5

T2

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fig. A scheduled task set
Communication delay on
The same processor: 0
Different processors: 1

Guaranteeing logical correctness

• However, the execution of a task may not be

successful sometimes.

• In real-time systems, finishing execution before

deadline is important though, logical correctness is

fundamental.

• So it is necessary to provide fault-tolerance in

real-time schedules.

Fault-tolerant Mechanism

• Fault-tolerance is built into the schedule using two

types of backups:

– Active backup

– Passive backup

T1

T1’

P1

P2

T2 T2’ T2’

Fault-tolerant Mechanism

T1 T1

T3

P1

P2

T2

• For the sake of simplicity and energy conservation,

in our problem, we use passive backup to build

fault-tolerance following two rules.

– Backup is executed immediately after the error task;

– All tasks dependent on it are delayed.

 It should be noted that the re-executed task may incur

error again.

Problem Definition

• In multi-core systems, when given

– A scheduled task set with N related tasks, say

 T={t1, t2, …, tn} ;

– the maximum number of faults that could occur during

the execution frame in the system, say X.

• Then, what’s the worst-case finish time(WCFT)

of this scheduled task set ?

• After finding WCFT, then the feasibility can be found, too.

Problem complexity

• Exactly, if a task set consists of N tasks and is subject to a
maximum number of X faults, there would be

𝑁 + 𝑋 − 1
𝑋

 distinct cases of fault occurrences.

• With a given fault occurrence, to compute the WCFT of the
scheduled task set, the time complexity will be O(N2),
which is the longest path of the scheduled task set.

• So, the total time complexity would be

𝑂
𝑁 + 𝑋 − 1 !

𝑋! 𝑁 − 1 !
𝑁2

 if all cases are computed which is very exhaustive.

Properties of a task set

• For a task set modeled by WDAG, we add two
dummy vertices.
– Tsr : has an edge for each vertex that has no incoming

edge in original DAG,

– Tsk: has an edge for each vertex that has no outgoing
edge in original DAG.

– One task T’s critical paths: the longest paths from Tsr to T

• Let Tc be the current task under investigation,

 PSTc be the Parents Set of Tc,

 ASTc be the Ancestors Set of Tc.

 Obviously, PSTc⊆ASTc,

Some Critical Proofs

• Lemma 1: T is not in any critical paths of Tc, if

critical paths of Tc don’t change when T incurs x

faults, reducing x will not affect the finish time of

Tc.

Tc T T T Tc T T

Some Critical Proofs

• Lemma 2: if more than one task in ASTc incur

faults, a worse or status quo finish time of Tc can

be always be found by letting one task T∈ASTc

incur all the X faults.

T2

Tc T1

T2

T1 T1

T2

Tc T1

T2

T1

T2

Tc

T2

Tc

T2 T2

Theorem: there exists at least one critical task for

any task Tc such that if this task incurs all the

expected X faults, task Tc experiences its worst-case

finish time.

Preprocessing

• When given a scheduled task set and its original

data dependency modeled by DAG, there are two

kinds of dependency.

– data dependency

– schedule dependency

T1
3

T3
4

T5
4

T2
4

T4
5

T6
2

Fig.(1) data dependency

Our Technique

• Base on our theorem, we can solve the problem

recursively.

WCFT(T1)=CT1+X*CT1 CT(T1)=T1

WCFT(T2)=CT2+X*CT2 CT(T2)=T2

 WCFT(T1)+W(T1,T2)+CT3

WCFT(T3)=Max WCFT(T2)+W(T1,T2)+CT3

 BCFT(T3)+X*CT3

Recursively solve the problem

T2

4

T1

3

T4

5

T3

4

T5

4

T6

2

Tsr

Tsk

𝑊𝐶𝐹𝑇 𝑇𝑠𝑘 = 𝑚𝑎𝑥

𝑊𝐶𝐹𝑇 𝑇5 +𝑊 𝑇5, 𝑇 + 𝐶𝑇𝑠𝑘
𝑊𝐶𝐹𝑇 𝑇6 +𝑊 𝑇5, 𝑇 + 𝐶𝑇𝑠𝑘

𝐵𝐶𝐹𝑇 𝑇𝑠𝑘 + 𝑋 ∗ 𝐶𝑇𝑠𝑘

 Ancestors set of task Tsk

𝐼𝐹 𝑊𝐶𝐹𝑇(𝑇𝑠𝑘)= 𝑊𝐶𝐹𝑇 𝑇5 +𝑊 𝑇5, 𝑇 + 𝐶𝑇𝑠𝑘

 CT(𝑇𝑠𝑘)=CT(T5)

Else

 CT(𝑇𝑠𝑘)=CT(T6)

task Tsk

Solve the problem

recursively

Experimental Setup

• A common practice that bet WCFT using the task

with longest execution time could under-estimate

the finish time of the task set.

• We compare the WCFT obtained by our
algorithm with the finish time when all faults
occur on the task with the longest execution time.

• Six benchmarks from DSPstone are used.

Conclusion

• Given a task set with N tasks and X being the
maximum number of faults could occur, we
conclude that there exists at least one critical task
for each task.

• A task undergoes it worst-case finish time when
one of its critical tasks incurs all X faults.

• We propose a recursive algorithm which can
identify the critical task and the worst-case finish
time of a scheduled task set.

• For a task set with N tasks and The algorithm takes
only 𝑂(𝑁2).

