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Timing Speculation Based Voltage Scaling

= Voltage scaling is best way to reduce power

 Switching power « V442, subthreshold leakage « V4, gate
leakage o V 4*

* Reducing V44 comes at cost of reduced circuit speed

= Timing speculation allows deeper V4 reduction by
eliminating timing margin
* Required timing margin becomes substantial in today’s
nanometer design

» Error correction incurs timing penalty



Motivation

Minimizing the number of error correction cycles is
Important to achieve deeper voltage scaling

* Previous methods focus on reducing timing penalty per error
correction

Voltage reduction below critical operating point
causes massive errors

« There is no error correction method considering multiple error
correction

Our method
* Minimize timing penalty per error correction
« Correct multiple errors simultaneously



Previous Works

Instruction replay
« 3N-cycle penalty (N: number of pipeline stages)

Counterflow pipelining
« 2k-cycle penalty (k: order of stage which detects error)

Bubble RazorlSSCc 2012]
« 1-cycle penalty
« Only applicable to two-phase transparent latch based designs

1-CTECI[ISLPED 2013]
« 1-cycle penalty
 Limitation in handling massive errors



Proposed Architecture

= To alter clock toward shadow latch in such a way
that shadow latch opens after main latch closes
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Proposed Architecture

= Shadow latch can send previous correct data to main
latch and also capture new input data during restore
cycle
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Clock Gating Signal Propagation

* Clock gating (C() signal is propagated to output
stages from stage where error occurred

« Stall signal is issued to pipeline when CG signal reaches last
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Error-Free Mode

= No late timing error occurs in this mode
« Stage gets into this mode once error occurs at the stage
« Example: stage B operates in error-free mode from cycle 2 to

cycle 4
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= Multiple errors at same stage are corrected with only

Multiple Timing Errors
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Multiple Timing Errors

= Multiple errors at different stages can be corrected
simultaneously

o — o — o —
AH i AH ih A
Clock cycles

1 2 3 4 5 6

> (0
249,




General Pipeline Architecture

= Multiple fan-in/fan-out structure
* Problem occurs when not all input stages sent CG signal

= Loop structure
« Key challenge: to prevent indefinite looping of CG propagation

Multiple fan-in/fan-out
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Multiple Fan-In/Fan-Out Case

= Problem

« Data loss at a multiple fan-in stage when not all input stages
sent CG signal

 Example: instruction 12 is lost at stage D in cycle 2
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Multiple Fan-In/Fan-Out Case

= Solution

« Generate virtual errors at all the stages that did not send CG
signals to multiple fan-in stages
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Virtual Error (VE) Signal

= Modified propagation algorithm
 |If stage receives CG signal from any of its input stages, send VE
to all of its input stages in the same cycle
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Loop Case

= VE signal prevents infinite looping of CG propagation
* VE is generated regardless of location where error happens
* Propagation of CG stops at stage where virtual error occurred

» Three examples for verification
1) Error occurs before loop
2) Error occurs in loop
3) Error occurs after loop
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Loop Case: Examples
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Experimental Results

= Setting
« Six pipelined circuits with 45-nm open cell library
« Two different number of pipeline stages (5 and 10)
« ¢1908, c3540, and c6288 from ISCAS’'85 were assumed for each
pipeline stage
* Pulse width of latch: 105 ps (main), 400 ps (shadow)
« Extra delay buffers were inserted to fix hold violations

« Applied 100 random vectors to each circuits to determine its
throughput and energy dissipation using fast SPICE simulation

18



When Target Throughput = 0.9

# Stages Base Counterflow 1-CTEC Ours
g circuit  Voltage [V] Energy [pJ] Voltage [V] Energy [pJ] Voltage [V] Energy [pJ]
c1908 0.92 783 0.84 707 0.84 716
c3540 0.94 2107 0.88 1816 0.86 1751
: c6288 0.98 5108 0.90 4307 0.90 4221
Average 1.16 1.00 | 0.98
c1908 0.94 1591 0.88 1362 0.86 1316
10 c3540 0.96 4931 0.90 3991 0.88 3692
c6288 0.98 10449 0.90 8489 0.88 7596
Average | 1.21 | 1.00 | 0.93

* Normalized energy dissipation of counterflow pipelining
Increases with more pipeline stages
« Timing penalty per error correction depends on # of pipeline stages
« Multiple errors cannot be corrected simultaneously



When Target Throughput = 0.7

# Stages Base Counterflow 1-CTEC Ours
g circuit  Voltage [V] Energy [pJ] Voltage [V] Energy [pJ] Voltage [V] Energy [pJ]
c1908 0.90 751 0.78 614 0.76 576
c3540 0.92 1912 0.82 1594 0.80 1515
: c6288 0.98 5108 0.86 3994 0.84 3706
Average 1.23 1.00 | 0.94
c1908 0.92 1540 0.88 1254 0.80 1153
10 c3540 0.96 4931 0.90 3411 0.80 2906
c6288 0.98 10449 0.90 7457 0.84 6625
Average | 1.36 | 1.00 | 0.89

= Energy reduction (compared to 1-CTEC)
« 5-stage: 2% (@ 0.9) and 6% (@ 0.7)
« 10-stage: 7% (@ 0.9) and 11% (@ 0.7)
= #of cycles that each stage runs in error-free mode increases
with # of pipeline stages



Conclusion

= Presented 1-cycle error correction method that can
handle massive errors
* Multiple errors can be corrected simultaneously

= Experiments (compared to 1-CTEC)

« 2~6% energy reduction for 5-stage pipeline and 7~11% energy
reduction for 10-stage pipeline
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Q&A

Thank you for your attention

Design Technology Lab., KAIST
Insup Shin (isshin@dtlab.kaist.ac.kr)
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