

Energy Efficient In-Memory Machine Learning for Data Intensive Image-Processing by Nonvolatile Domain-Wall Memory

Hao Yu¹, Yuhao Wang¹, Shuai Chen¹, Wei Fei¹, Chuliang Weng², Junfeng Zhao² and Zhulin Wei² ¹School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore ²Huawei Shannon Laboratory, China

http://www.ntucmosetgp.net

Machine Learning for Image Recognition

"We took an artificial neural network and spread the computation across 16,000 of our CPU cores (in our data centers), and trained models with more than 1 billion connections." -- Google brain team

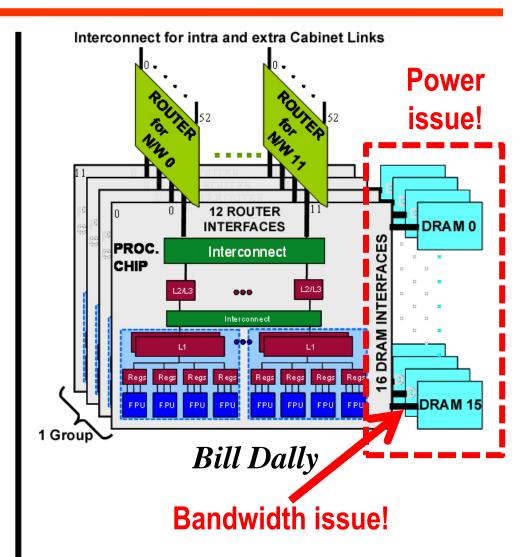
A Cat Neuron

"One of the neurons in the artificial neural network, trained from still frames from unlabeled YouTube videos, learned to detect cats."

Big-data Center at Exascale

- 1 Core = <u>Microprocessor</u> (=6 Giga Flops @1.5GHz)
 - •4 FPUs + RegFiles
- •1 Chip = 742 Cores (=4.5 Tera Flops/s)
 - 213 MB of L1 I&D + 93 MB of L2
- 1 Node = 1 Chip + 16 **DRAMs** (16GB)
- 1 Group = 12 Nodes + 12 Routers (=54Tera Flops/s)
- 1 Rack = 32 Groups (=1.7 Peta Flops/s)
 - 384 nodes / rack
- •1 Data Center (=1 Exa Flops/s)
 - •3.6EB of Disk Storage
 - -3.6PB = 0.0036 bytes/flops
 - •583 Racks

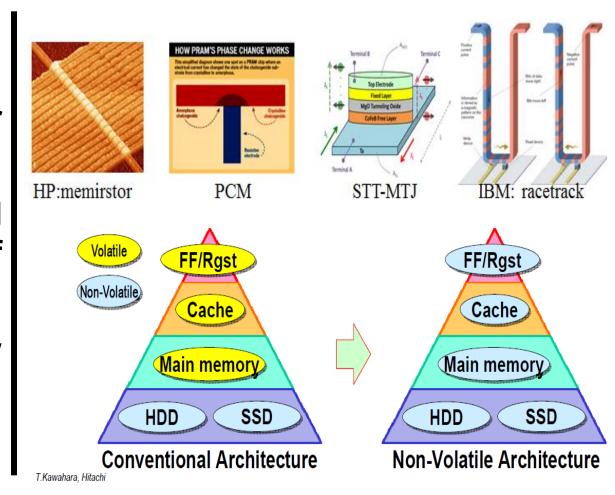
Thousand cores in big memory



100Gbps bandwidth with 68MW power

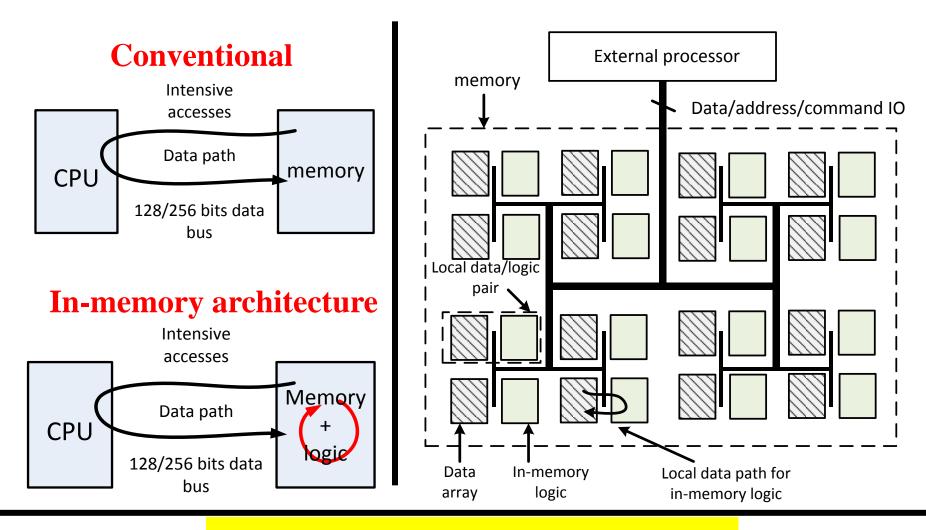
Nonvolatile Memory Device

- No-volatile state
- 2. No leakage power consumption
- 3. Small overhead between on/off switching
- 4. Universal memory for logic-in-memory



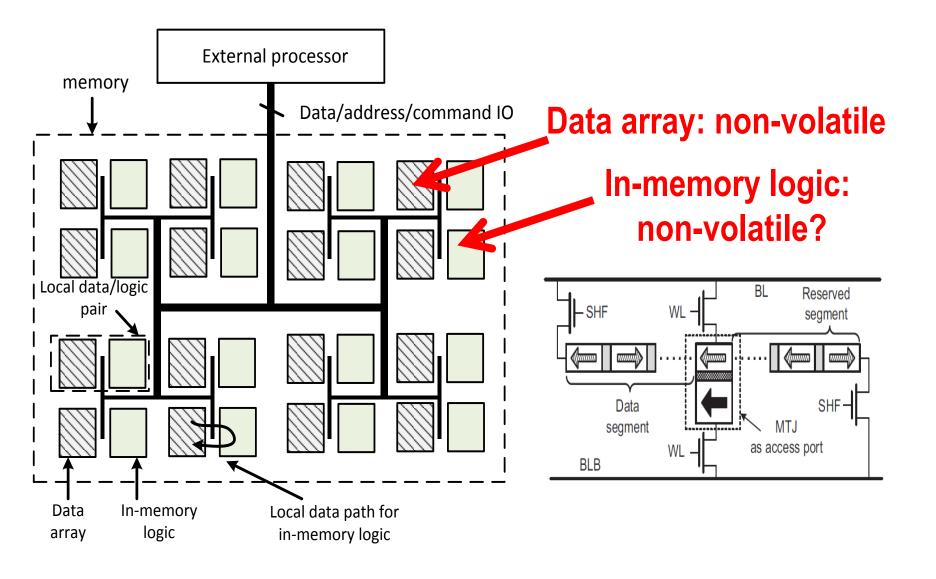
Power issue

In-memory Computing Architecture



Bandwidth issue

Non-volatile In-memory Computing

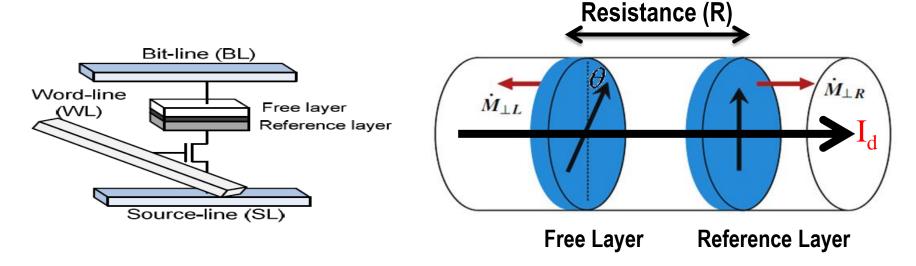


Outline

- NVM Device Modeling
- NVM In-memory Logic
- NVM In-memory Architecture for Machine Learning

State of STT-MTJ Devices

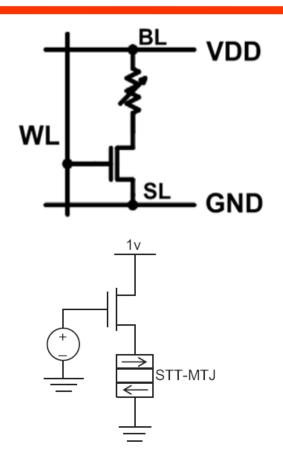
- Macro-scale state of spintroinc device:
 - \blacksquare Magnetization angle $\theta(t)$ between successive magnetic layers
 - State dynamics governed by Landau-Lifshitz-Gilbert equation



State θ(t) in terms of giant magnetization resistance:

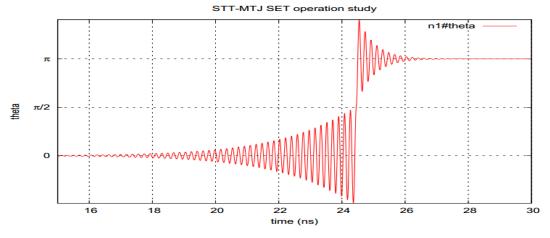
GMR Equation
$$R(\theta) = R(\theta_0) + \Delta R_{GMR} (1 - \cos \theta(t))/2$$

NVM SPICE for STT-MTJ



 $\begin{array}{l} plot \ v(n1\#theta) \\ plot \ (v(3)\text{-}v(4))/i(vasst) \end{array}$

http://www.nvmspice.org

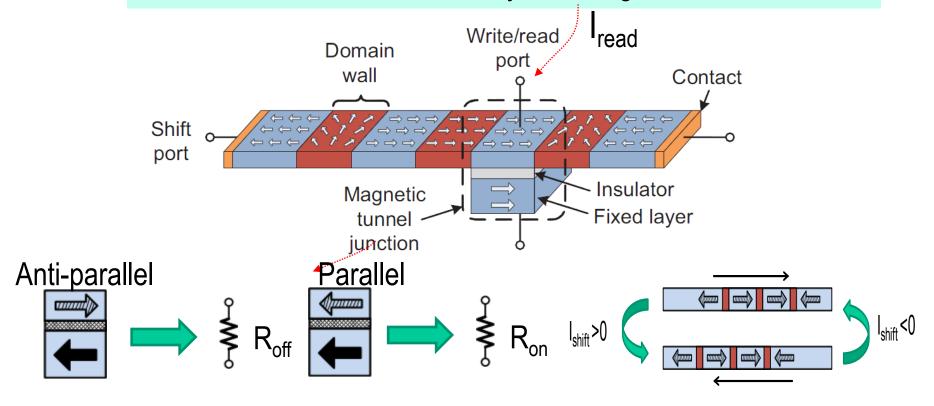


Array size	Behavioral Macromodel (s)	Physical model in NVM-SPICE (s)	Speedup ratio
8*8	2.522	0.257	10x
16*16	98.131	1.87	52x
32*32	1119.99	11.533	97x
64*64	22188.8	189	117x

From STT-MTJ to Domain-wall Nanowire

Shifter, Write, Read operation:

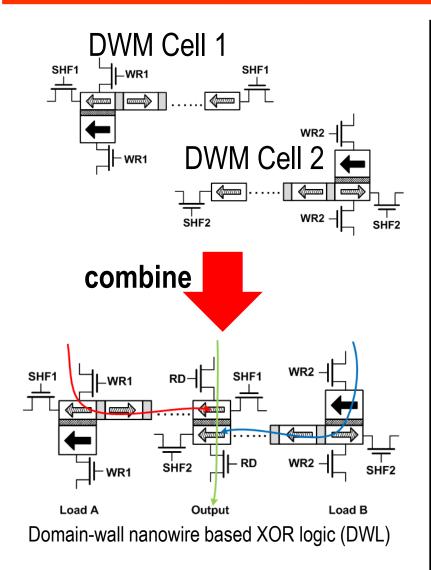
- 1. Apply shift current to select domain
- 2. Apply write/read current through write/read port
- 3. The state can be read out by detecting the MTJ resistance



Outline

- NVM Device Modeling
- NVM In-memory Logic
- NVM In-memory Architecture for Machine Learning

Domain-wall based XOR Logic

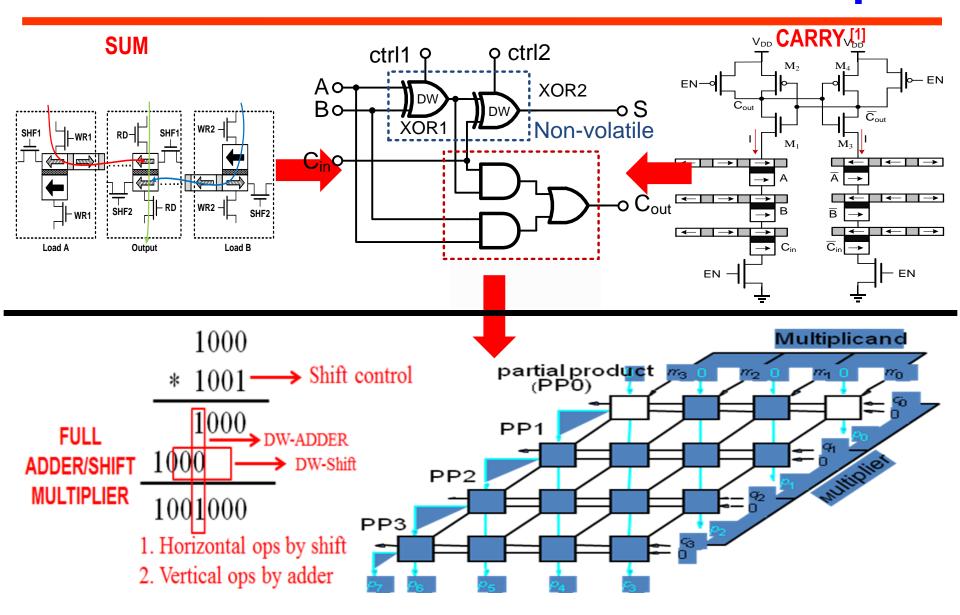


- •XOR gate is most complicated (16 transistors each gate) among all logic gates
- •XOR is highly used for big-data applications such as comparison and addition
- Power optimized XOR gate by DWL

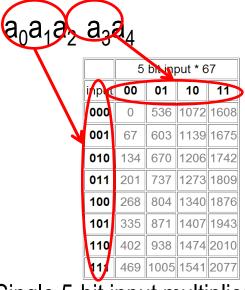
Two domain-wall nanowire devices to build one XOR gate:

- Write A to left nanowire
- Shift A to constructed port
- Write B to right nanowire
- Shift B to constructed port
- Read resistance of constructed port

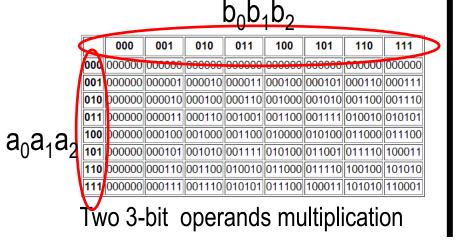
Domain-wall based Full-adder and Multiplier



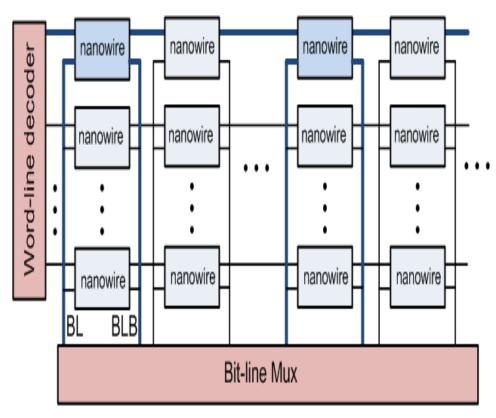
Domain-wall based LUT Logic



Single 5-bit input multiplication with constant



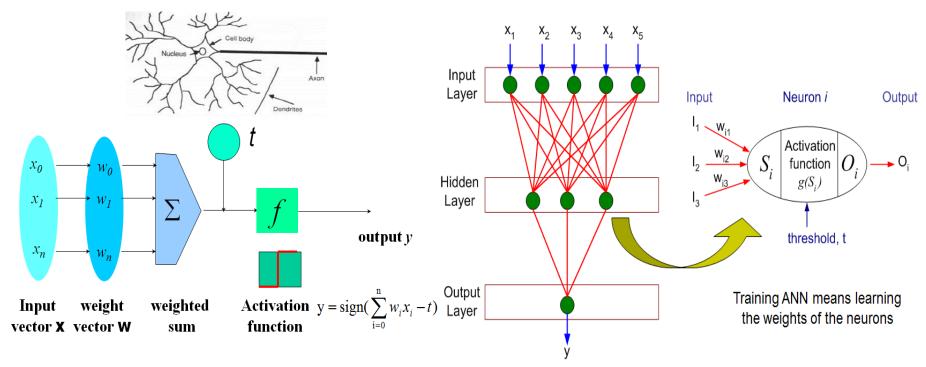
- Any logic function y=f(x) can be mapped to look-up table (LUT) with specified inputs
- •DWM for LUT word-line and bit-line decoders take the input and find the target nanowire cell that stores results



Outline

- NVM Device Modeling
- NVM In-memory Logic
- NVM In-memory Architecture for Machine Learning

Neuron and Neuron Network



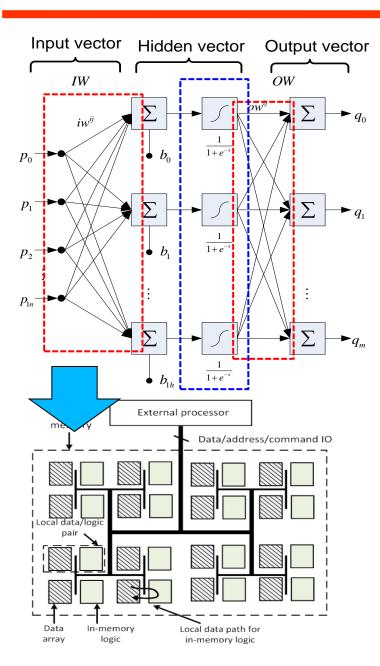
Neuron model

- An assembly of interconnected nodes and weighted links
- Output node sums up each of its input value according to weights of its links Compare output node against some threshold *t*

Neuron network

- A set of neurons with forwarded connection from inputs to outputs
- Hidden layer weights are obtained from off-line training and updated from on-line learning

Non-volatile In-Memory ELM-SR



Extreme learning machine

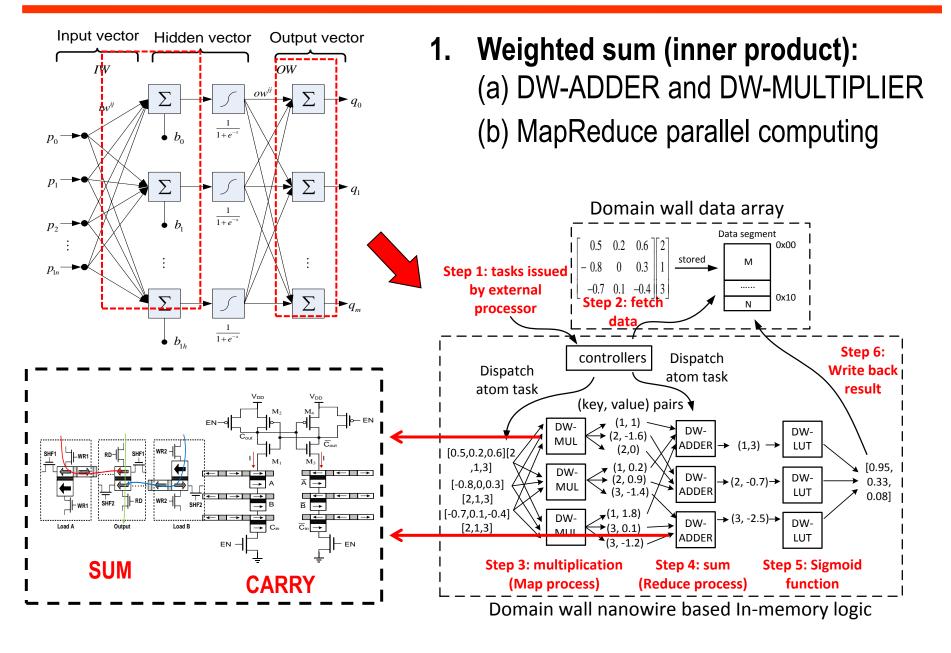
- Single hidden layer feed-forward neural networks
- Tuning-free without expensive iterative training of parameters
- ELM based image superresolution (ELM-SR)
 - Enhance resolution in image recognition for recognition
- How to map ELM-SR to nonvolatile in-memory architecture?

Extreme Learning Machine based Super-resolution

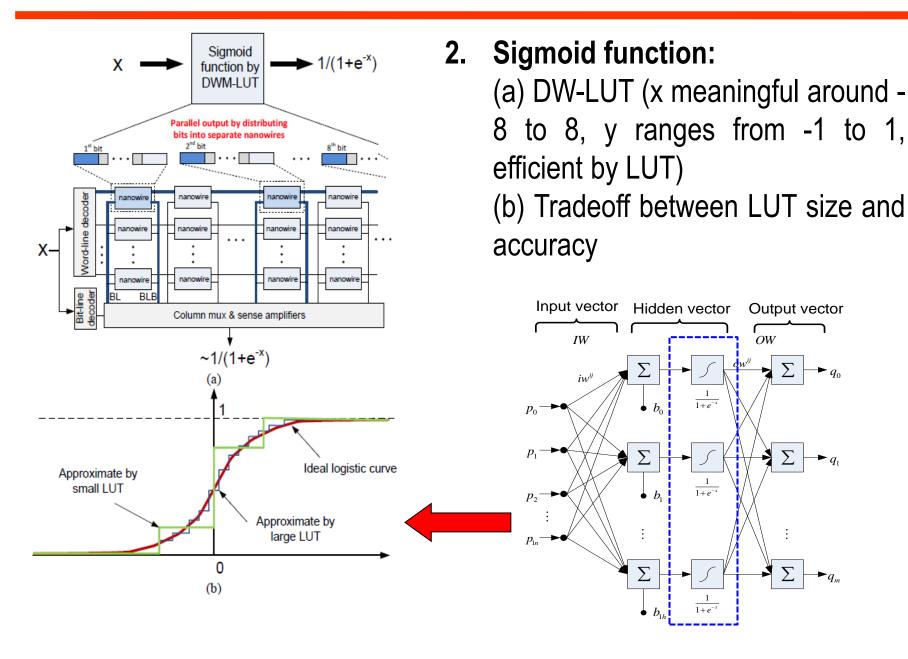
ELM-SR flow:

- a) Input (offline memory): feature vector <u>P</u> extracted from images
- b)Training (offline memory) → obtain output weight vector ow
- c) Randomly generated input weight <u>iw</u> bias <u>b</u> matrices (offline memory): parameters tuning free
- d) Testing (online logic)
 - 1. input vectors times input weight vector *P*iw*
 - 2. sigmoid function $s = sigmoid(P^*iw+b)$
 - 3. multiplication by output weight matrix s*ow

ELM-SR Operation Mapping: Weighted Sum

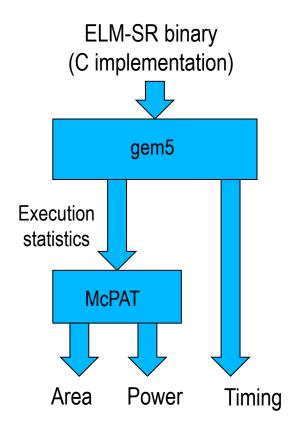


ELM-SR Operation Mapping: Sigmoid



Experimental Settings and Methodology

Conventional general purpose processor platform



Proposed in-memory domain-wall based neural network platform

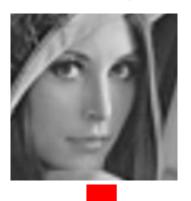
DW geometric and magnetic parameters¹ **DW-CACTI NVM-SPICE** DW-ADDER/DW-MULTIPLIER DW-I UT DW-LOGIC performance performance In-memory behavioral simulator FI M-SR Area Power Timing

¹ Technology node of 32nm is assumed with width of 32nm, length of 64nm per domain, and thickness of 2.2nm for one domain-wall nanowire; the R_{off} is set at 2600Ω, the R_{on} at 1000Ω, the writing current at 100 μ A, and the current density at 6 × 10⁸A/cm² for shift-operation.

Preliminary Results and Conclusions

Machine learning for super-resolution imaging

Comparisons with conventional architecture



Platform	DW-NN	GPP (with on-chip memory)	GPP (with off-chip memory)
Computation al resources utilized	1×Processor 7714×DW-ADD ER 7714×DW-MUL 551×DW-LUT 1×controller	1×Processor	1×Processor
Area of computationa 1 units	18 mm ² (processor) + 0.5 mm ² (accelerators)	18 mm ²	18 mm ²
Power (Watt)	10.1	12.5	12.5
Throughput (MBytes/s)	108MBytes/s	9.3MBytes/s	9.3MBytes/s
Energy efficiency (nJ/bit)	7	389	642

- 1. All operations involved in machine learning on neural network can be mapped to a logic-in-memory architecture by non-volatile domain-wall nanowire.
- 2. I/O traffic in proposed DW-NN is greatly alleviated with an energy efficiency improvement by 92x and throughput improvement by 11.6x compared to the conventional image processing system by general purpose processor.

Thank you!

Please send comments to haoyu@ntu.edu.sg

http://www.ntucmosetgp.net

