Lessons from the Neurons Themselves

Howard Hughes Medical Institute

Overview

- Properties of neural circuits
- Studying the brain
- What we know so far
- Applications to neuromorphic computation

- Cool feature #1: Grow, not built. Nanometer features with no \$6B factory.
- Connections not specified in advance

Cool feature #2: systems are extremely robust
Both in construction and operation

Cool feature #3: Biological systems adapt and learn

Neuromorphic Computing

- "Computing like the brain does"
 - Example: "The Silicon Retina", Mahowald and Mead, Scientific American, 1991

- Good plan, but one significant drawback
 - With very few exceptions, <u>we don't know how the</u> <u>brain computes.</u>

Even politicians recognize this is a good problem to work on!

History – Basic Science

- Caton saw electrical activity in animal brains, 1875
- Berger produced first EEGs of humans in 1924
- Hodgkin-Huxley Nobel-winning model in 1953
 - Established basic model of how the brain works

Model organisms

- Fruit fly
 - Breeds quickly, cheap, excellent genetics
- Zebrafish
 - Vertebrate, larva transparent
- Mouse
 - Mammal, good genetics

Peterson lab, U Texas

Figuring out how the brain works

- Hot topic many methods are being used
 - Structural reverse engineering
 - Genetic
 - Behavioral
 - Electrophysiology
 - Imaging
 - Lineage

Combinations of these techniques

Philosophy, Washinton and Lee

Electrical: single cell recording

- Perfect resolution
- Input and output
- Drawbacks
 - Invasive
 - Hard to connect to desired cell
 - Short life (1/2 hour)
 - Not easy to parallelize

Structural – Reverse Engineering

• Just like reverse engineering electronics

Neuron Reconstruction

7 columns of the fruit fly medulla.

Each column is the second stage of processing behind each facet of the eye

800 columns in total on each side of a 1 mm fly

Further out

- Fly brain fits in this box
- Assume 8nm isotropic voxels
- Will have netlist of whole fly brain in 5-10 years

Genetic techniques

- Can create specific modification of a subset of neurons by crossing animals
 - Permanently on or off
 - By temperature
 - Optogenetically
 - Small molecule

Automated behavioral analysis

Present various stimuli; look at response

Electrophysiology

- Animals such as mice and rats can wear headgear
- Now working for flies using 'virtual reality'

Extracellular recording (many cells)

IMTEK probes, from CMOS technology

 $500 \, \mu m$

IMTFK

Consortium for active probes

• Readout of hundreds of channels

The Gatsby Charitable Foundation

Brain imaging (here in zebrafish)

Lineage - how cells connect

RNA-seq

- DNA for *every* protein present in *all* cells
 - Genome sequencing does not tell which are used
- Sequence RNA to see what is expressed
 - Different for every cell type
- Gives full list of expression, not just transmitters

Nobelprize.org

Attach magnet to cell types Dissolve fly; separate out; Sequence RNA

What have we learned?

- Neurons are themselves complex
- Local, non-linear feedback
- Supporting structure is active
- Neuromodulators provide non-local communication
- Time-varying connectivity

Lesson #1 - complex neurons

• Far from iso-potential

Tech	Bio 100 nm	Bio 1 um	Si 20 nm
R /mm	130G	1.3G	54K
C /mm	3.1pf	31pf	200ff
Gate delay	1ms	1ms	20ps
Break- even	71u	225 um	43u

Used in computation

- Local over-threshold causes positive feedback propagation
 - Amplification of distant inputs
 - Coincidence detection
 - Compressive non-linearities
 - Neurons within neurons (almost) independent computation in different branches.

Lesson 2: Neural network structure

• Go to Wikipedia, look up neural net:

• Looks very simple

Neural Net in Practice

 Advanced neural nets are more complex, but conceptually similar

Biological Neural Net

- Relatively few layers
- Not neatly organized
- Lots of lateral and feedback connections

Feedback everywhere

 Lots of local feedback

Calling all theorists!

Lesson #3: Support structure is active

- Gray is neuron, blue glia, arrow synapse
- Quick look shows a division of labor

1 micron http://synapses.clm.utexas.edu/anatomy/astrocyte/astrocyte.stm Astrocytes in the hippocampus, Rachel E. Ventura

But a closer look shows glia communicate

- What are are they doing?
- Perhaps modulate the energy supply?

ATP provides energy for neurons

Glial Modulation of Synaptic Transmission in the Hippocampus Andrea Volterra and Christian Steinhauser

Modern electronics does this

... So we should not be surprised

The Power Management IC for the Intel[®] Atom[™] Processor E6xx Series

Lesson #4: Neuromodulators

- Cells can express two or more types of outputs
 - Neurotransmitters talk to adjacent cell
 - Neuromodulators diffuse and talk to distant cells

Some cells use both mechanisms

Can tell by different sizes of vesicles (yellow and orange)

Deniz Atasoy, J. Nicholas Betley, Wei-Ping Li, Helen H. Su, Louis K. Scheffer, Julie H. Simpson, Richard D. Fetter, Scott M. Sternson

Neuro-modulators behave differently

- Transmitter, uptake is rapid, only neighbor sees
- Modulator, uptake is slow
- Transport dominated by diffusion

Rice, Patel, and Cragg, Dopamine Release in the Basal Ganglia, Neuroscience 198:112-137, 2011

Neuromodulators

Range of influence includes hundreds of cells

Data from Zhi-Yuan Lu, Shan Xu, Harald Hess.

Influence depends on strength

 Plot of volume (left) and number of synapses (right) vs. number of molecules released.

Rice, Patel, and Cragg, Dopamine Release in the Basal Ganglia, Neuroscience 198:112-137, 2011

Active time depends on distance

• On and offset times vs distance away

Rice, Patel, and Cragg, Dopamine Release in the Basal Ganglia, Neuroscience 198:112-137, 2011

Lesson #5: Time varying circuits

Svoboda et al, Janelia, HHMI From how far away can a cell make new connections ??

We don't know the mechanism!

Conclusions

- Considerable progress in understanding the brain
- Biological computation uses many mechanisms
 - Computationally complex cells
 - Highly connected networks
 - Active substrates
 - Long range communication
 - Time varying circuits
- These tricks may be needed, or may be artifacts,
- But neuromorphics needs to understand them

The end

Circuit types and status

- Hardwired circuits (vision system)
 - Same from animal to animal
 - Making good progress
- PLA like systems (olfactory)
 - Every animal different, but in standard ways
 - Harder, but technical advances should suffice
- Fully programmable and time varying (cortex)
 - New ideas are needed

