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Background

= Big data - request for computation
resource

Data is growing at a 40 percent compound annual rate, reaching nearly 45 ZB by 2020 Inform at ion
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Background

= Blindly increasing the computation resource -
explosive increase in power consumption and $$$

= Power hungry !



Background

= SO0 how to reduce the power consumption and save
money ?

= 1. renewable energy based computing

Power budget
varies

Power (W)
32

Day 1 Day 2 Day 3

= 2. power budgeting to improve the power efficiency
(GFLOPS/Watt)



Background

= Problem to solve and the challenges
= Optimize the performance over a given power budget.

= Challenge 1: large solution spaces.
= 16-core, each can run at 4 frequency levels - 4 choices

= Challenge 2: should be fast and prompt enough to track
the power budget variation
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Related work

= Power allocation at core level [1], system level [2],
NoC [3], etc.

= Techniques: DVFS [2], power gating [4], etc.

= Shortcomings
= Heuristic-based, ad-hoc: sub-optimal

= Linear/ convex programming: High run time overhead
and might consume much power

= Poor scalability

[1] Li et al, HPCA'06

[2] Ma et al, PACT’12

[3] Sharifi et al, PACT’12
[4] Reda et al, MICRO 2012



So what we propose ?

= A dynamic programming network (DPN) based
power allocation method
= Using a hardware circuit to solve the problem
= Globally optimal solutions
= Can allocate power for multiple applications

= Very fast (linear complexity) and low overhead (in terms
of both area and power consumption)
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Models

. Suppose Q applications

. Power model

P =Zn:ai .C.-f-V? :Zn:bi - .
i=1 i=1

. Performance model

- Cycle = eycle (f,, ..., qu)
- We find the In() function is a good approximator

Nq
InCycle=>"a,-/f;
i=1



Problem formulation

= Problem

= Can be converted to the knapsack problem by dropping
the In notation

max [l = z.nz- - fi
i=1
subject to
Y bi-fi+ P <P
i—1

for each f; € {11, ..., Tm}
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The proposed algorithm

Exhaustive approach

= The knapsack problem

W: 10 W: 20
V: 2 V: 6
Bag ON
root
OFF

W: 12
V:3 W: 8 ), Power consumption
V:2 execution time
ON
ON
N O o
OFF
<:> Exponential !
OFF
ON ON
OFF
ON

OFF Can we reduce the size?
OFF



The proposed algorithm

Native approach

= Let'stry

ON ON ON
«ggt. " oo Uops:
root wl+w2+w3>W
-
OFF OFF OFF

Sorry, I’'m too

heavy to be in
the bag !

Not Markovian!
Let’s convert it to be Markovian



The proposed algorithm

Type -1 DPN

=« Dynamic programming network DPN(V, E)

= V: DP value V(y;,) : the max value of assigning f; given a
power budget of p,

= E: each vertex at stage i iIs connected to at most m
vertices in the next stage I+1.

= An edge exists between two vertices, v;, and v;,;, , if p— g
= bt for 1<l<m

) _|ayrh, ifp-q=Db-7
| =0,  otherwise



The proposed algorithm

Type -1 DPN

DPN architect

P vertices in each stage
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The proposed algorithm

Type -1 DPN

. DPN traversal

= Each node selects an output edge with

V(Vi,p’d) — rnv%X{C(Vi,p’d) +V(Vi+1,q’d)1v (Vi,p’d)}



The proposed algorithm

Type -1 DPN

= An example
max: Perf= f;+2f,+3f;

Problem : P=f,+f,+2f5=< 10

fi {2, 4}
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Evaluation

Number of processors 64
B Setup Fetch/Decode/Commit 4/4/4
size
= 8x8 | ROB size 64
= Com 1D cache (private) 16KB, 2-way, 32B line, 2 cycles, 2
ports, dual tags
= Pl L11cache (private) 32KB, 2-way, 64B line, 2 cycles
= P L2 cache (shared) 64KB slice/node, 64B line, 6 cycles, 2
ports

=D Frequencies available 1GHz, 800MHz, 500MHz, 330MHz
On-chip network parameters

NoC flit size 72-bit
Data packet size 5 flits 15
Meta packet size 1 flit )
NoC latenc ter: 2 cycles, link: 1 cycl ACT12
.y router: 2 cycles, link: 1 cycle - TC’ 2013
Number of VC in NoC 4

NoC buffer size 5x12 flits



Evaluation

= Performance comparison

= Reduces 26 %, 20%, 30 % execution time over
PGCapping, PEPON, DPPC given power

budget = 90W
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Evaluation

Run fime adantiveness to nower hiidaet variation

Input solar power & actual power consumption
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— The other three have high run time overhead and cannot
match the rapid change in power budget



Evaluation

= Cost analysis

= Area and power consumption of the DPN is 0.84 % and
0.27 % of the network-on-chip.

= Running time: 2n cycles, where n is the network size
« For a 64-core system, it's 128 cycles.
=« Other approaches: 1M or more cycles



Outline

s Conclusion



Conclusion

The power allocation problem is formulated as a
constraint optimization problem

Dynamic programming is used to solve the problem.
A HW circuit Is used to accelerate the computation,
with linear time complexity

It can achieve better performance (lower execution)
time over a power budget

It has low running time and area overhead



THANKS
ANY QUESTIONS?



Backup slides

= Hmm, what's the type -2 DPN?
= Do | get more time ?



Conclusion
Extensions

= Clock gating instead of frequency scaling
(submitted to DAC)

= Use auction models and support switching off to
further reduce power consumption (accepted by
DATE)

= Optimal power allocation and path selection for
NoC



Type -2 DPN

= The shortcoming of the type-1 DPN
= Storage O(NP), P is the power budget

= What if P = 100 Watt?

= Can we reduce the storage to O(NM), M is the allowable
frequency levels #?

4 We Can!




Type -2 DPN

= How ?
= Pass 1: an optimal path w.r.t. the power consumption
= Pass 2: an optimal path w.r.t. the performance (value)

Can we simply put M vertices in each stage, instead of P vertices as in Type =1?

'u

VAN >



Type -2 DPN

DPN:
= Viy;;:atile 1 with frequency set to be .

= E:! each edge connects two vertices v;;and v;,, , in stage
1+1

Pass 1: additional DP value J(v;;) : the optimal cost-to-go
function w.r.t. power consumption from stage S to I.

Forward traversing Forward
ON . ON ? ON ’ ON4
(3
rootO ) (‘5(\/3’0) O
OFF OFF OFF  OFF

J(v3,): the optimal cost of power from stage 0 to 3



Type -2 DPN

Pass 2: an optimal path w.r.t. the performance (value)

= V(v;;): the optimal performance from stage N back to I

= g(v;): the optimal power cost from stage N back to I

= Constraint:  J(v;;)+b - f +g(v,;)<P , b; f.: the power
consumption of tile |

Select the optimal edge among those that confirms to

the constraint Backward
1 2 3 4
ON ON ON ON
@(VB,l)
root (5(\/3'0)
OFF OFF OFF  OFF

V(v3): the optimal performance from stage 5 to 3
g(vs,) : the optimal power cost from stage 5 to 3



Type -2 DPN

= What is the trick ?

= Represent the power
constraint of the full path

fromStoD )bg 3 Where west meets east

W \d«g >

| OFF OFF | OFF

|

J(v5): the optimal cost of power from g(v3,) : the optimal cost of power from stage
stage 0 to 3 5to3

The cost of power of the path from S to D thru v, , should be less than the total power budget P
J(V3) +hs f3 + g(vy o) <P




Type -2 DPN

= What's the trick ?

= Two passes, the first pass finds the optimal power cost from
stage S up to stage i, J(),

= In the second pass, backward, finds the optimal power cost from
stage D backto i, g()

= S0, J() + power cost of | + g() = the power cost of the full path
from S to D thru I.

= Now, we can find the optimal performance paths among the
paths that confine to the above constraint.

O
> ) ® D



Type -2 DPN

= In general, if there are Q sets of constraints,
= Q forward passes with J (v;;) (in parallel)
= A backward pass, with g,(v;;)
= Even constraints of higher order, e.g., b; .2, ¢; f:3
= 0<0=<Q x_
max Perf:;af-ﬂ

N
subjectto D> b - f; <P
i=1

N Q constraints
dz-f<Z
i=1

foreach f; € {Fi, ..., Fu}



Type -2 DPN

= An application
= Optimal decision for both router power allocation (by

frequency scaling or ON/OFF) AND routing path
selection simultaneously

( This is the o
and only ro
\___Should bée ON
3 D Two optimization done
Given a power budget, in one process.
allocate to the routers The topology of the DPN
optimally AND find the tracks the NoC topology orf O

optimal path



