
Agile Frequency Scaling for Adaptive

Power Allocation in Many-core Systems

Powered by Renewable Energy Sources

Xiaohang Wang, Zhiming Li, Mei Yang, Yingtao
Jiang, Masoud Daneshtaleb and Terrence Mak

Guangzhou Institute of Advanced Technology, Chinese Academy of Science

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

Background

 Big data  request for computation

resource

Background

 Blindly increasing the computation resource 

explosive increase in power consumption and $$$

 Power hungry !

Background

 So how to reduce the power consumption and save

money ?

 1. renewable energy based computing

 2. power budgeting to improve the power efficiency

(GFLOPS/Watt)

Power budget
varies

Background

 Problem to solve and the challenges

 Optimize the performance over a given power budget.

 Challenge 1: large solution spaces.

 16-core, each can run at 4 frequency levels  416 choices

 Challenge 2: should be fast and prompt enough to track

the power budget variation

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

Related work

 Power allocation at core level [1], system level [2],

NoC [3], etc.

 Techniques: DVFS [2], power gating [4], etc.

 Shortcomings

 Heuristic-based, ad-hoc: sub-optimal

 Linear/ convex programming: High run time overhead

and might consume much power

 Poor scalability

[1] Li et al, HPCA’06
[2] Ma et al, PACT’12
[3] Sharifi et al, PACT’12
[4] Reda et al, MICRO 2012

So what we propose ?

 A dynamic programming network (DPN) based

power allocation method

 Using a hardware circuit to solve the problem

 Globally optimal solutions

 Can allocate power for multiple applications

 Very fast (linear complexity) and low overhead (in terms

of both area and power consumption)

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

Models

• Suppose Q applications

• Power model

• Performance model

– Cycle = gcycle (f1, …, fNq)

– We find the ln() function is a good approximator

2

1 1

n n

i i i i i

i i

P C f V b f
 

      

1

ln
qN

i i

i

Cycle a f


 

Problem formulation

 Problem

 Can be converted to the knapsack problem by dropping

the ln notation

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

The proposed algorithm
Exhaustive approach

 The knapsack problem

W: 10
V: 2

W: 20
V: 6

W: 12
V: 3 W: 8

V: 2

Bag

Power consumption
execution time

…

root

Exponential !

Can we reduce the size?

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

OFF

ON

The proposed algorithm
Native approach

 Let’s try

root

ON

OFF

ON

OFF

ON

OFF

ON

OFF

Optimal Optimal

Sorry, I’m too

heavy to be in

the bag !

w1+w2+w3>W

Not Markovian!
Let’s convert it to be Markovian

The proposed algorithm
Type -1 DPN

 Dynamic programming network DPN(V, E)

 V: DP value V(vi,p) : the max value of assigning fi given a

power budget of p,

 E: each vertex at stage i is connected to at most m

vertices in the next stage i+1.

 An edge exists between two vertices, vi,p and vi+1,q if p – q

= for i lb  1 l m 

  1

, 1,,
, oth

, if

erwise
q

l

i

i i

i p

lp qa b
C v v

 



  








The proposed algorithm
Type -1 DPN

• DPN architecture

n stages corresponds to the n tiles

0

P

...

s d

0

P

...

1
1

a



0

P

...

f1
fn

Stage 1 Stage n

...

0

P

...

...

...

...

1
ma 

1

na


n
ma 

P vertices in each stage

=

+

+

From vi,j+1

∀k, an edge exists

between vi,j and vi+1,k

...

...

Vertex vi,j

Bypass

The proposed algorithm
Type -1 DPN

• DPN traversal

 Each node selects an output edge with

, , 1, ,(,) max{ (,) (,), (,)}i p i p i q i p

q
V v d C v d V v d V v d


 

The proposed algorithm
Type -1 DPN

 An example

2

4

6

8

10

f1 f2 f3

s

0

d

Problem : P= f1+f2+2f3≤ 10

fi ∈{2, 4}

12

84

2

2

4

6

8

10

0

2

4

6

8

10

0

2

4

6

8

10

0

12

6

6

6
6

8

8

8

4

4

4

4

4

4

4

4

2

2

2

2

fi =2 fi =4

max: Perf= f1+2f2+3f3

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

Evaluation

 Setup

 8x8 many-core

 Compare with

 PGCapping: freq scaling+PG[1]

 PEPON: freq scaling of cores and LLC[2]

 DPPC: freq scaling using linear programming [3]

[1] Ma et al, PACT’12
[2] Sharifi et al, PACT’12
[3] Ma et al, IEEE TC’ 2013

Number of processors 64
Fetch/Decode/Commit

size
4 / 4 / 4

ROB size 64

L1 D cache (private) 16KB, 2-way, 32B line, 2 cycles, 2
ports, dual tags

L1 I cache (private) 32KB, 2-way, 64B line, 2 cycles

L2 cache (shared) 64KB slice/node, 64B line, 6 cycles, 2
ports

Frequencies available 1GHz, 800MHz, 500MHz, 330MHz

On-chip network parameters

NoC flit size 72-bit

Data packet size 5 flits

Meta packet size 1 flit

NoC latency router: 2 cycles, link: 1 cycle

Number of VC in NoC 4

NoC buffer size 5x12 flits

Evaluation

 Performance comparison

 Reduces 26 %, 20%, 30 % execution time over

PGCapping, PEPON, DPPC given power

budget = 90W

Evaluation

• Run time adaptiveness to power budget variation

– Energy loss: (input power budget – power consumption)

integrated over time

Energy

loss

– The other three have high run time overhead and cannot
match the rapid change in power budget

Evaluation

 Cost analysis

 Area and power consumption of the DPN is 0.84 % and

0.27 % of the network-on-chip.

 Running time: 2n cycles, where n is the network size

 For a 64-core system, it’s 128 cycles.

 Other approaches: 1M or more cycles

Outline

 Background

 Related work

 Models and problem formulation

 The proposed algorithm

 Evaluation

 Conclusion

Conclusion

 The power allocation problem is formulated as a

constraint optimization problem

 Dynamic programming is used to solve the problem.

A HW circuit is used to accelerate the computation,

with linear time complexity

 It can achieve better performance (lower execution)

time over a power budget

 It has low running time and area overhead

Backup slides

 Hmm, what’s the type -2 DPN?

 Do I get more time ?

Conclusion
Extensions

 Clock gating instead of frequency scaling

(submitted to DAC)

 Use auction models and support switching off to

further reduce power consumption (accepted by

DATE)

 Optimal power allocation and path selection for

NoC

Type -2 DPN

 The shortcoming of the type-1 DPN

 Storage O(NP), P is the power budget

 What if P = 100 Watt?

 Can we reduce the storage to O(NM), M is the allowable

frequency levels #?

Type -2 DPN

 How ?

 Pass 1: an optimal path w.r.t. the power consumption

 Pass 2: an optimal path w.r.t. the performance (value)

root

ON

OFF

ON

OFF

ON

OFF

ON

OFF

Type -2 DPN

• DPN:

 V: vi,j: a tile i with frequency set to be j.

 E: each edge connects two vertices vi,j and vi+1,l in stage

i+1

• Pass 1: additional DP value J(vi,j) : the optimal cost-to-go

function w.r.t. power consumption from stage S to i.

Forward traversing

root

ON

OFF

ON

OFF

ON

OFF

ON

OFF

J(v3,0)

1 2 3 4

J(v3,0): the optimal cost of power from stage 0 to 3

J(v3,1)

Forward

Type -2 DPN

• Pass 2: an optimal path w.r.t. the performance (value)

 V(vi,j): the optimal performance from stage N back to i

 g(vi,j): the optimal power cost from stage N back to i

 Constraint: , bi fi : the power

consumption of tile i

• Select the optimal edge among those that confirms to

the constraint

root

ON

OFF

ON

OFF

ON

OFF

ON

OFF

J(v3,0)

1 2 3 4

V(v3,0): the optimal performance from stage 5 to 3

g(v3,0) : the optimal power cost from stage 5 to 3

J(v3,1)

Backward

, ,() ()i j i i i jJ v b f g v P   

Type -2 DPN

 What is the trick ?

 Represent the power

constraint of the full path

from S to D

S

ON

OFF

ON

OFF

ON

OFF

ON

OFF

J(v3,0)

1 2 4

g(v3,0) : the optimal cost of power from stage

5 to 3

J(v3,1)

J(v3,0): the optimal cost of power from

stage 0 to 3

b3 f3

The cost of power of the path from S to D thru v3,0 should be less than the total power budget P

 J(v3,0) +b3 f3 + g(v3,0) ≤P

D

Type -2 DPN

 What’s the trick ?
 Two passes, the first pass finds the optimal power cost from

stage S up to stage i, J(),

 In the second pass, backward, finds the optimal power cost from
stage D back to i, g()

 So, J() + power cost of i + g() = the power cost of the full path
from S to D thru i.

 Now, we can find the optimal performance paths among the
paths that confine to the above constraint.

S D

Type -2 DPN

 In general, if there are Q sets of constraints,

 Q forward passes with Jq(vi,j) (in parallel)

 A backward pass, with gq(vi,j)

 Even constraints of higher order, e.g., bi fi
2, ci fi

3

 0≤ q ≤Q

1

N

i i

i

z f Z


 

…
. Q constraints

Type -2 DPN

 An application
 Optimal decision for both router power allocation (by

frequency scaling or ON/OFF) AND routing path

selection simultaneously

S

ON

OFF

ON

OFF

D

S D
Given a power budget,
allocate to the routers

optimally AND find the

optimal path

ON

OFF

