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Background 

 Big data  request for computation 

resource 



Background 

 Blindly increasing the computation resource  

explosive increase in power consumption and $$$ 

 Power hungry ! 

 



Background 

 So how to reduce the power consumption and save 

money ? 

 1. renewable energy based computing 

 

 

 

 

 

 

 2. power budgeting to improve the power efficiency 

(GFLOPS/Watt) 

 

 

 

Power budget 
varies 



Background 

 Problem to solve and the challenges 

 Optimize the performance over a given power budget. 

 Challenge 1: large solution spaces.  

 16-core, each can run at 4 frequency levels  416 choices 

 Challenge 2: should be fast and prompt enough to track 

the power budget variation 
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Related work 

 Power allocation at core level [1], system level [2], 

NoC [3], etc.  

 Techniques: DVFS [2], power gating [4], etc. 

 Shortcomings 

 Heuristic-based, ad-hoc: sub-optimal  

 Linear/ convex programming:  High run time overhead 

and might consume much power 

 Poor scalability 

[1] Li et al, HPCA’06 
[2] Ma et al, PACT’12 
[3] Sharifi et al, PACT’12 
[4] Reda et al, MICRO 2012 
 



So what we propose ? 

 A dynamic programming network (DPN) based 

power allocation method 

 Using a hardware circuit to solve the problem 

 Globally optimal solutions 

 Can allocate power for multiple applications  

 Very fast (linear complexity) and low overhead (in terms 

of both area and power consumption) 
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Models 

• Suppose Q applications 

• Power model 

 

 

• Performance model 

– Cycle = gcycle (f1, …,  fNq) 

– We find the ln() function is a good approximator 
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Problem formulation 

 Problem  

 Can be converted to the knapsack problem by dropping 

the ln notation 
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The proposed algorithm 
Exhaustive approach 

 The knapsack problem 

W: 10 
V: 2 

W: 20 
V: 6 

W: 12 
V: 3 W: 8 

V: 2 

Bag  

Power consumption 
execution time 
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root 

Exponential ! 

Can we reduce the size? 
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The proposed algorithm 
Native approach  

 Let’s try 

root 

ON 

OFF 

ON 

OFF 

ON 

OFF 

ON 

OFF 

Optimal  Optimal  

Sorry, I’m too 

heavy to be in 

the bag ! 

w1+w2+w3>W 

Not Markovian! 
Let’s convert it to be Markovian 



The proposed algorithm 
Type -1 DPN 

 Dynamic programming network DPN(V, E) 

 V: DP value V(vi,p) : the max value of assigning fi given a 

power budget of p,  

 E: each vertex at stage i is connected to at most m 

vertices in the next stage i+1.  

  An edge exists between two vertices, vi,p and vi+1,q if p – q 
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The proposed algorithm 
Type -1 DPN 

• DPN architecture  

 

 

n stages corresponds to the n tiles 
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The proposed algorithm 
Type -1 DPN 

• DPN traversal   

 Each node selects an output edge with 
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The proposed algorithm 
Type -1 DPN 

 An example  
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Evaluation 

 Setup  

 8x8 many-core 

 Compare with 

 PGCapping: freq scaling+PG[1] 

 PEPON: freq scaling of cores and LLC[2] 

 DPPC: freq scaling using linear programming [3] 

[1] Ma et al, PACT’12 
[2] Sharifi et al, PACT’12 
[3] Ma et al, IEEE TC’ 2013 
 

Number of processors 64 
Fetch/Decode/Commit 

size 
4 / 4 / 4 

ROB size 64 

L1 D cache (private)  16KB, 2-way, 32B line, 2 cycles, 2 
ports, dual tags 

L1 I cache (private)  32KB, 2-way, 64B line, 2 cycles 

L2 cache (shared)  64KB slice/node, 64B line, 6 cycles, 2 
ports 

Frequencies available  1GHz, 800MHz, 500MHz, 330MHz 

On-chip network parameters  

NoC flit size  72-bit 

Data packet size 5 flits 

Meta packet size 1 flit 

NoC latency  router: 2 cycles, link: 1 cycle 

Number of VC in NoC 4 

NoC buffer size 5x12 flits 



Evaluation 

 Performance comparison  

 Reduces 26 %, 20%, 30 % execution time over 

PGCapping, PEPON, DPPC given power 

budget = 90W  



Evaluation 

• Run time adaptiveness to power budget variation  

– Energy loss: ( input power budget – power consumption) 

integrated over time 

 

 

 

 

 

 

Energy 

loss 

– The other three have high run time overhead and cannot 
match the rapid change in power budget 



Evaluation 

 Cost analysis 

 Area and power consumption of the DPN is 0.84 % and 

0.27 % of the network-on-chip. 

 Running time: 2n cycles, where n is the network size 

 For a 64-core system, it’s 128 cycles. 

 Other approaches: 1M or more cycles  
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Conclusion 

 The power allocation problem is formulated as a 

constraint optimization problem 

 Dynamic programming is used to solve the problem. 

A HW circuit is used to accelerate the computation, 

with linear time complexity   

 It can achieve better performance (lower execution) 

time over a power budget 

 It has low running time and area overhead 



 



Backup slides 

 Hmm, what’s the type -2 DPN? 

 Do I get more time ? 



Conclusion 
Extensions  

 Clock gating instead of frequency scaling 

(submitted to DAC) 

 Use auction models and support switching off to 

further reduce power consumption (accepted by 

DATE) 

 Optimal power allocation and path selection for 

NoC 



Type -2 DPN 

 The shortcoming of the type-1 DPN 

 Storage O(NP), P is the power budget 

 What if P = 100 Watt? 

 Can we reduce the storage to O(NM), M is the allowable 

frequency levels #? 



Type -2 DPN 

 How ? 

 Pass 1: an optimal path w.r.t. the power consumption  

 Pass 2: an optimal path w.r.t. the performance (value) 

root 

ON 

OFF 

ON 

OFF 

ON 

OFF 

ON 

OFF 



Type -2 DPN 

• DPN: 

 V: vi,j: a tile i with frequency set to be j. 

 E: each edge connects two vertices vi,j and vi+1,l in stage 

i+1 

• Pass 1: additional DP value J(vi,j) : the optimal cost-to-go 

function w.r.t. power consumption from stage S to i. 

Forward traversing 

 

root 

ON 

OFF 

ON 

OFF 

ON 

OFF 

ON 

OFF 

J(v3,0) 

1 2 3 4 

J(v3,0): the optimal cost of power from stage 0 to 3 

J(v3,1) 

Forward  



Type -2 DPN 

• Pass 2: an optimal path w.r.t. the performance (value) 

 V(vi,j): the optimal performance from stage N back to i 

 g(vi,j): the optimal power cost from stage N back to i 

 Constraint:                                                   ,  bi fi : the power 

consumption of tile i 

• Select the optimal edge among those that confirms to 

the constraint  

 

root 

ON 
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ON 
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ON 
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J(v3,0) 

1 2 3 4 

V(v3,0): the optimal performance from stage 5 to 3 

g(v3,0) : the optimal power cost from stage 5 to 3 

J(v3,1) 

Backward  
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Type -2 DPN 

 What is the trick ? 

 Represent the power 

constraint of the full path 

from S to D 

S 

ON 

OFF 

ON 

OFF 

ON 

OFF 

ON 

OFF 

J(v3,0) 

1 2 4 

g(v3,0) : the optimal cost of power from stage 

5 to 3 

J(v3,1) 

J(v3,0): the optimal cost of power from 

stage 0 to 3 

b3 f3 

The cost of power of the path from S to D thru v3,0 should be less than the total power budget P 

 J(v3,0) +b3 f3 + g(v3,0) ≤P  

D 



Type -2 DPN 

 What’s the trick ? 
 Two passes, the first pass finds the optimal power cost from 

stage S up to stage i, J(), 

 In the second pass, backward, finds the optimal power cost from 
stage D back to i, g() 

 So, J() + power cost of i + g() = the power cost of the full path 
from S to D thru i. 

 Now, we can find the optimal performance paths among the 
paths that confine to the above constraint.  

S D 



Type -2 DPN 

 In general, if there are Q sets of constraints,  

 Q forward passes with Jq(vi,j) (in parallel) 

 A backward pass, with gq(vi,j) 

 Even constraints of higher order, e.g., bi fi
2, ci fi
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Type -2 DPN 

 An application  
 Optimal decision for both router power allocation (by 

frequency scaling or ON/OFF) AND routing path 

selection simultaneously  

S 

ON 

OFF 

ON 

OFF 

D 

S D 
Given a power budget, 
allocate to the routers 

optimally AND find the 

optimal path 

ON 

OFF 


