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Motivation for Networks-on-Chig

» Future of computing is multi-core

» 2 to 4 cores are common, 8 to 16 widely available
e.g. Niagara 16-core, Intel 10-core Xeon, AMD 16-core Opteron

 Expected progression: hundreds or thousands of cores
 Trend towards complex systems-on-chip (SoC)

» Communication complexity: new limiting factor

» NoC design enables orthogonalization of concerns:

» Improves scalability
- buses and crossbars unable to deliver desired bandwidth
- global ad-hoc wiring does not scale to large systems

* Provides flexibility

- handle pre-scheduled and dynamic traffic
- route around faulty network nodes

« Facilitates design reuse
- standard interfaces increase modularity, decrease design time




Key Active Research Challenges for NoCs

» Power consumption

* Will exceed future power budgets by a factor of 10x
- [Owens IEEE Micro-07]

* Global clocks: consume large fraction of overall power

* Complex clock-gating techniques
- [Benini et al., TVLSI-02]

» Chips partitioned into multiple timing domains

* Difficult to integrate heterogeneous modules

* Dynamic voltage/frequency scaling (DVFS) for lower power
- [Ogras/Marculescu DAC-08]

» A key performance bottleneck = latency
e Latency critical for on-chip memory access
* Important for chip multiprocessors (CMP’s)




Potential Advantages of Asynchronous Design

» Lower power
* No clock power consumed
* |dle components consume no dynamic power
- IBM/Columbia FIR filter [Tierno, Singh, Nowick, et al., ISSCC-02]

» Greater flexibility/modularity

* Easier integration between multiple timing domains

e Supports reusable components
- [Bainbridge/Furber, IEEE Micro-02 Magazine]
- [Dobkin/Ginosar, Async-04]

» Lower system latency

* No per-router clock synchronization = no waiting for clock

- [Sheibanyrad/Greiner et al., IEEE Design & Test ‘08]
- [Horak, Nowick, et al., NOCS-10]



Motivation for Our Research

» Target = interconnection network for CMP’s
* Network between processors and cache memory
* GALS NoC: sync/async interfaces + async network

» Requires high performance

* Low system-level latency
- Lightweight routers for low-latency

* High sustained throughput .

- Maximize steady-state throughput [l e L g

» Target topology = variant MoT — "B PEERT L
(“Mesh-of-Trees”) B = =— ,

* Tree topologies becoming widely used for CMP’s:
- XMT [Balkan/Vishkin et al., Hot Interconnects-07]
- Single-cycle network [Rahimi, Benini, et al., DATE-11]
- NOC-OUT [Grot, Falsafi, et al., IEEE Micro-12]

» Our two main contributions:
* High-performance async network with advance arbitration
* Detailed comparative evaluation on 8 benchmarks :
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» Mesh-of-Trees (MoT) network with “early arbitration”
 Target system-latency bottleneck

« Observe newly-entering traffic

 Perform early arbitration + channel pre-allocation
% Net benefit: bypass arbitration logic + pre-opened channel

» “Early arbitration” capability in fan-in router nodes
» Simple and fast = operate as FIFO in many traffic scenarios

» Monitoring network:
 Rapid advance notification of incoming data

 Fast and lightweight
« Key component for early arbitration
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» Detailed experimentation and analysis

« “Early arbitration” network vs. “baseline” and “predictive”

- “baseline”: [Horak/Nowick, NOCS-10]
- “predictive”: [Gill/Nowick, NOCS-11]

« 8 diverse synthetic benchmarks

- represent different network conditions

» Significant latency improvement and comparable throughput

- New vs. baseline: 23-30% latency improvement
- New vs. predictive: 13-38% latency improvement

« Low end-to-end system latency
- ~1.7ns (at 25% load, 90nm): through 6 router nodes + 5 hops



Related Work: NoC Acceleration Techniques

» Express virtual channels [Kumar/Peh, ISCA-07]
» Selective packets use dedicated fast channels

« Virtually bypass intermediate nodes
== improvements only against slow coarse-grained baseline: 3-cycle operation

» SMART NoC [chen/Peh, DATE-13]
« Selective packets traverse multiple hops in one cycle
==) requires advanced circuit-level techniques + aggressive timing assumptions

» Hybrid network [Modarressi/Arjomand, DATE-09]

« A normal packet-switched network + fast circuit-switched network

* Flits can switch between two sub-networks
==) requires partitioned network (statically-allocated) + large circuit-switched setup time

» NoC using “advanced bundles” [kumar et al., ICCD-07]
 Provides advanced information of flit arrival

* Closer to our approach
==) “advance bundles” advance only one cycle per hop (unlike our approach) 3



* New Asynchronous MoT Network
» Overview of the “Early Arbitration” Approach

» Monitoring Network
» Design of the New Arbitration Node

* Experimental Results

» Simulation Setup
> Network-Level Results
e Conclusion and Future Work
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» Topology basics Fanout: | Fan-in :

: Network Network :

« Fan-out and fan-in network
== “inverse” of classical MoT (Leighton)

« Two node types
Routing: 1 input and 2 output channels
Arbitration: 2 input and 1 output channels

» Routing features

» Deterministic wormhole routing T A=
Path examples shown in the figure
« No contention between distinct source/sink pairs

» Potential performance benefits
 Lower latency and higher throughput over 2D-mesh

« Shown to perform well for CMP’s
[Balkan/Vishkin, Trans. VLSI, Oct. 09], [Balkan/Vishkin, Hot Interconnects-07]
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Data .\..-'...—' 1 outgoing
1 incoming handshaking
handshaking 2 outgoing 2 incoming channel
channel handshaking handshaking

channels channels

» Routing primitive
1 input channel and 2 output handshaking channels
 Route the input to one of the outputs

» Arbitration primitive
2 input and 1 output handshaking channels
« Merge two input streams into one output stream

11



» Handshaking: transition signaling (two-

« TWo events per transaction
- Reqg/Ack toggle

* Merits over level signaling (four-phase):
- 1 roundtrip communication per data item
- High throughput and low power

» Challenge of two-phase signaling:
- designing lightweight implementations

Sender

ack

Receiver

First

communication

req

Second
commun/i?‘/on

ack /

o

» Data encoding: single-rail bundled data

 Standard synchronous single-rail data + extra “bundling” req

 Merits of single-rail bundled data:
- Jow power and very good coding efficiency

- allow to re-use synchronous components

 Challenge: requires matched delay for “bundling req”
- one-sided timing constraint: “request” must arrive after data is stable
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* New Asynchronous MoT Network

» Overview of the “Early Arbitration” Approach
» Monitoring Network
» Design of the New Arbitration Node

* Experimental Results

» Simulation Setup
> Network-Level Results
e Conclusion and Future Work
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» Key network bottleneck {Fan-oury | Fanin |

¢ Network | ¢ Network {
- System-latency R <
- bottleneck of arbitration logic in fan-in nodes

» Basic strategy = anticipation
* Observe newly-entering traffic
* Do early arbitration + channel pre-allocation

% Net benefit: bypass arbitration logic

> PrOpOsed netWOI‘k Routing nodes New arbitration

hanged d
* As soon as flit enters network: (unchanged) nodes
- all downstream nodes quickly notified (by a monitoring network)

- fan-in nodes: initiate early arbitration + channel pre-allocation

* When flit arrives at each fan-in node:
- quickly sent out through pre-allocated channel

14
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* New Asynchronous MoT Network

» Monitoring Network

» Design of the New Arbitration Node

* Experimental Results

» Simulation Setup
> Network-Level Results
e Conclusion and Future Work
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» Purpose: rapid advance notification of incoming data

» Structure: lightweight shadow replica of MoT network

« Small monitoring control unit attached to each node
- i.e. both routing and arbitration

» Fast and lightweight
- Implemented by several gates for each control unit

» Different role for fan-out and fan-in monitoring
« Fan-out: fast forward early notification without using it

« Fan-in: fast forward and use it for early arbitration

16



» Structure: a shadow replica of MoT network
* Small and fast monitoring control unit attached for each node
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» When a flit enters the network
* Early notification generated and fast forwarded

Early notification
generated at fan-out root

Early notification traces
same path as flits
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outline

* New Asynchronous MoT Network

» Design of the New Arbitration Node

* Experimental Results

» Simulation Setup
» Network-Level Results
e Conclusion and Future Work
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Monitoring channels: provide advance info. on incoming traffic
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Mutex: resolves arbitration between 2 input channels
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Mutex Input Control: requests/releases Mutex
Key component to enable early arbitration
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Input channel latch + control:
Two functions: (i) enables channel pre-allocation, (ii) flow control
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Monitoring control: fast forwards early notification
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Early arbitration capability:
Monitoring signals initiate arbitration, before actual flit arrival
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Highly optimized forward path:
contains only 1 pre-opened latch = FIFO stage
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» Two simulations

#1. Single-flit scenario
- friendly case
- illustrate how early arbitration works

#2. Contention between two input channels
- more advanced and adversarial case
- illustrate how to resolve contention
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Step #1: Monitoring signal arrives (wel/ before actual flit)
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Step #2: Completes early arbitration
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Step #3: Flit arrives and gets through pre-allocated channel
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Both monitoring signals arrive almost simultaneously
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Both monitoring signals request mutex
=) Assume channel #0 wins arbitration
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Flit on channel #0 arrives and goes through pre-allocated channel

Flit on channel #1 arrives but is blocked
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Channel #0 finally releases mutex =& channel #1 wins
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Flit on channel #1 gets through

something-

coming-in-0 , something-
something- _coming-out
coming-in-1 preackout0 L COr

ackout0 . - Monitor

ackoutl - - preagoutl [ Centrol |

Channel #1 is mutex-regl i
nNOW opened R?
output-en

erowins

onewins
J e ]
s T ‘ reqout

reqini Channel #1
regin .

mux_select ﬂlt Sent OUt
datainO
tataind dataout
atain

38



Structure largely the same as single-flit design
Different Mutex Input Control: receives “tail flag”
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QUUING

* Introduction
* Background
* New Asynchronous MoT Network
» Overview of the “Early Arbitration” Approach

» Monitoring Network
> Design of the New Arbitration Node

* Experimental Results

» Simulation Setup
» Network-Level Results
e Conclusion and Future Work
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» Two levels of evaluation:
 Node-level: new arbitration node in isolation

« Network-level: 8 x 8 network with new node

» Node-level evaluation: see paper for details

« New arbitration node vs. two previous designs:

- Baseline [Horak/Nowick NOCS-10]
- Predictive [Gill/Nowick NOCS-11]

* 90nm ARM standard cells, gate-level SPICE simulation

» Network-level evaluation: our focus

« Three 8 x 8 MoT networks: each has 112 router nodes
- Baseline, Predictive, New

- Modeled in structural technology-mapped Verilog
- more accurate model than in [Gill/Nowick NOCS-11]

- 8 synthetic benchmarks: a wide range of traffic patterns
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» 8 diverse benchmarks
* The same as those in NOCS-11
» Represent different network conditions

» Classification
 Three friendly benchmarks:
- (1) Shuffle, (2) Tornado and (7) Single Source broadcast [Dally 03]
- No contention
« Three moderately adversarial benchmarks:

- (4) Simple alternation with overlap

- (5) Random restricted broadcast with partial overlap

- (8) Partial streaming with random interruption

- No contention for some nodes, light or moderate contention for others

 TwWo most adversarial benchmarks:

- (3) All-to-all random and (6) Hotspot8
- Heavy contention at some nodes "




» Moderate to significant improvement over all benchmarks

* New vs. baseline: 23-30% improvement
* New vs. predictive: 13-38% improvement

o0 Latency Comparison for 25% Network Load
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> Perform well for benchmark #3 and #6 (adversarial cases)

* Predictive: even worse than baseline (~20% higher latency)
« New: better than baseline (~25% lower latency)

oo Latency Comparison for 25% Network Load
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» Excellent latency stability: provides predictable behavior

 Network latency = ~1700ps, across all benchmarks
through 6 router nodes + 5 hops

« Important for memory access in CMP’s

100 - Latency Comparison for 25% Network Load
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» New vs. baseline: improvement up to 17% on 6 benchmarks
» New vs. predictive: comparable throughput over all benchmarks
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> Fixed packet length = 3 flits/packet
» Results only for benchmark #1 and #3

» For both benchmarks:
e ~30% latency and ~14% throughput improvement
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. 4 .

» Introduced a MoT network using “early arbitration”
» Address system-latency bottleneck

» Observe newly entering traffic
- via lightweight shadow monitoring network

 Perform early arbitration + channel pre-allocation

» Detailed experimentation and analysis

« Significant improvements in system-latency
- New vs. baseline: 23-30% across all benchmarks
- New vs. predictive: up to 38%
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» Narrow channel reservation window
» Decrease time between “channel reservation” and “flit arrival”
* Increase network utility

» Target different topology
« Extend “early arbitration” to 2D-mesh, Clos network, etc.

» Build a complete GALS system
 Add mixed-timing interface = connect cores by the network

» More experiments
* Real traffic benchmarks
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» Three network designs

* Baseline
- [Horak/Nowick, NOCS-10]
- foundation of the research

* Predictive
- [Gill/Nowick, NOCS-11]
- @ more recent design

* New
- the proposed design
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Step #1: Waiting for arbitration to complete

Input channel 0
Flit arrives

Input channel 1

Output channel

Step #2:

Arbitration resolves

Input channel 0
Output channel

Input channel 1 _
Flit sent out

52



Waiting for arbitration to complete

Flit arrives

DatainO
Something-coming-0 =========--- Dataout

Datainl Flit sent out

Something-coming-1 ===========-

Default Mode: similar operation as "baseline” design

Biased channel: held open

Flits sent out without waiting
Flit arrives

Datain0
Something-coming-0 ==========-- Dataout

Datainl Flit sent out

Something-coming-1 =-====-==---

Non-biased channel: entirely blocked
Biased Mode: optimized for one input channel (by prediction)




Advance notification completes arbitration and

opens the channel well before actual flit arrival

N\

Monitoring arrives
Datain0

Something-coming-0

Dataout

Datainl

Something-coming-1 =======-----

Step #2:

Flits sent out without waiting

Flit arrives

Datain0
Something-coming-0 ======------ Dataout

Datainl Flit sent out

Something-coming-1 =------------

Arbitration already done
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The Role of Monitoring Network

» Predictive design [Gill/Nowick, NOCS-11]

» Facilitates mode change
- from optimized (biased) to unoptimized (default) only

* For safety purpose only
- plays secondary role

» New design
« Key component of early arbitration strategy
- directly initiates early arbitration

* For higher performance
- especially system-latency
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