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Motivation for Networks-on-Chip

 Future of computing is multi-core 
• 2 to 4 cores are common, 8 to 16 widely available

e.g. Niagara 16-core, Intel 10-core Xeon, AMD 16-core Opteron

• Expected progression: hundreds or thousands of cores

• Trend towards complex systems-on-chip (SoC) 

Communication complexity:  new limiting factor

NoC design enables orthogonalization of concerns:

• Improves scalability
- buses and crossbars unable to deliver desired bandwidth

- global ad-hoc wiring does not scale to large systems

• Provides flexibility
- handle pre-scheduled and dynamic traffic

- route around faulty network nodes

• Facilitates design reuse
- standard interfaces increase modularity, decrease design time
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Key Active Research Challenges for NoCs

 Power consumption
• Will exceed future power budgets by a factor of 10x

- [Owens IEEE Micro-07]

• Global clocks: consume large fraction of overall power

• Complex clock-gating techniques
- [Benini et al., TVLSI-02]

Chips partitioned into multiple timing domains

• Difficult to integrate heterogeneous modules

• Dynamic voltage/frequency scaling (DVFS) for lower power
- [Ogras/Marculescu DAC-08]

A key performance bottleneck = latency
• Latency critical for on-chip memory access

• Important for chip multiprocessors (CMP’s)
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Potential Advantages of Asynchronous Design

 Lower power
• No clock power consumed
• Idle components consume no dynamic power

- IBM/Columbia FIR filter [Tierno, Singh, Nowick, et al., ISSCC-02]

Greater flexibility/modularity

• Easier integration between multiple timing domains

• Supports reusable components
- [Bainbridge/Furber, IEEE Micro-02 Magazine] 

- [Dobkin/Ginosar, Async-04] 

 Lower system latency
• No per-router clock synchronization         no waiting for clock

- [Sheibanyrad/Greiner et al., IEEE Design & Test ‘08]

- [Horak, Nowick, et al., NOCS-10]
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Motivation for Our Research

 Target = interconnection network for CMP’s
• Network between processors and cache memory
• GALS NoC:  sync/async interfaces + async network

 Requires high performance
• Low system-level latency

- Lightweight routers for low-latency

• High sustained throughput
- Maximize steady-state throughput

 Target topology = variant MoT
(“Mesh-of-Trees”)

• Tree topologies becoming widely used for CMP’s:
- XMT [Balkan/Vishkin et al., Hot Interconnects-07]
- Single-cycle network [Rahimi, Benini, et al., DATE-11]
- NOC-OUT [Grot, Falsafi, et al., IEEE Micro-12]

 Our two main contributions: 
• High-performance async network with advance arbitration
• Detailed comparative evaluation on 8 benchmarks 5
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Contributions (1)

Mesh-of-Trees (MoT) network with “early arbitration”
• Target system-latency bottleneck

• Observe newly-entering traffic

• Perform early arbitration + channel pre-allocation

 Net benefit: bypass arbitration logic + pre-opened channel

 “Early arbitration” capability in fan-in router nodes
• Simple and fast      operate as FIFO in many traffic scenarios     

Monitoring network:
• Rapid advance notification of incoming data

• Fast and lightweight

• Key component for early arbitration
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Contributions (2)

Detailed experimentation and analysis

• “Early arbitration” network vs. “baseline” and “predictive”

- “baseline”: [Horak/Nowick, NOCS-10]

- “predictive”: [Gill/Nowick, NOCS-11]

• 8 diverse synthetic benchmarks

- represent different network conditions

• Significant latency improvement and comparable throughput

- New vs. baseline: 23-30% latency improvement

- New vs. predictive: 13-38% latency improvement 

• Low end-to-end system latency

- ~1.7ns (at 25% load, 90nm): through 6 router nodes + 5 hops 
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Related Work: NoC Acceleration Techniques

 Express virtual channels [Kumar/Peh, ISCA-07]

• Selective packets use dedicated fast channels

• Virtually bypass intermediate nodes
improvements only against slow coarse-grained baseline:  3-cycle operation

 SMART NoC [Chen/Peh, DATE-13]

• Selective packets traverse multiple hops in one cycle

requires advanced circuit-level techniques + aggressive timing assumptions

 Hybrid network [Modarressi/Arjomand, DATE-09]

• A normal packet-switched network + fast circuit-switched network 

• Flits can switch between two sub-networks

requires partitioned network (statically-allocated) + large circuit-switched setup time

 NoC using “advanced bundles” [Kumar et al., ICCD-07]

• Provides advanced information of flit arrival

• Closer to our approach

“advance bundles” advance only one cycle per hop (unlike our approach) 8
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Background: Mesh-of-Trees (MoT) Variant

Topology basics
• Fan-out and fan-in network

“inverse” of classical MoT (Leighton)

• Two node types
Routing: 1 input and 2 output channels

Arbitration: 2 input and 1 output channels

Routing features
• Deterministic wormhole routing

Path examples shown in the figure

• No contention between distinct source/sink pairs

 Potential performance benefits
• Lower latency and higher throughput over 2D-mesh

• Shown to perform well for CMP’s
[Balkan/Vishkin, Trans. VLSI, Oct. 09], [Balkan/Vishkin, Hot Interconnects-07]
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Background: Two Node Types

Routing primitive
• 1 input channel and 2 output handshaking channels

• Route the input to one of the outputs

Arbitration primitive
• 2 input and 1 output handshaking channels

• Merge two input streams into one output stream

Routing 
Primitive

Req0
Ack0

Data0

Req1
Ack1

Data1

Data

Req
Ack

Boolean

Source Routing

1 incoming 
handshaking 

channel
2 outgoing 

handshaking 
channels

Arbitration 
PrimitiveReq1

Ack1

Data1

Req0
Ack0

Data0

Data

Req
Ack

2 incoming 
handshaking 

channels

1 outgoing 
handshaking 

channel
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Background: Asynchronous Protocols

Handshaking: transition signaling (two-phase)
• Two events per transaction

- Req/Ack toggle

• Merits over level signaling (four-phase): 
- 1 roundtrip communication per data item

- High throughput and low power

• Challenge of two-phase signaling:  
- designing lightweight implementations

Data encoding: single-rail bundled data 
• Standard synchronous single-rail data + extra “bundling” req

• Merits of single-rail bundled data:
- low power and very good coding efficiency 

- allow to re-use synchronous components

• Challenge: requires matched delay for “bundling req”
- one-sided timing constraint:  “request” must arrive after data is stable
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Overview: Early Arbitration Strategy

Key network bottleneck
• System-latency

- bottleneck of arbitration logic in fan-in nodes

Basic strategy = anticipation
• Observe newly-entering traffic

• Do early arbitration + channel pre-allocation

 Net benefit: bypass arbitration logic

 Proposed network
• As soon as flit enters network:

- all downstream nodes quickly notified (by a monitoring network)

- fan-in nodes: initiate early arbitration + channel pre-allocation

• When flit arrives at each fan-in node:

- quickly sent out through pre-allocated channel
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Monitoring Network: Overview

 Purpose: rapid advance notification of incoming data

 Structure: lightweight shadow replica of MoT network

• Small monitoring control unit attached to each node 
- i.e. both routing and arbitration

 Fast and lightweight

• Implemented by several gates for each control unit

Different role for fan-out and fan-in monitoring
• Fan-out: fast forward early notification without using it

• Fan-in: fast forward and use it for early arbitration
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Monitoring Network: Structure

 Structure: a shadow replica of MoT network

• Small and fast monitoring control unit attached for each node
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Control

Monitoring

Control

Monitoring control 
attached to each node

x

17



Monitoring Network: Operation

 When a flit enters the network
• Early notification generated and fast forwarded
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New Arbitration Node: Circuit-Level
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New Arbitration Node: Interfaces

Mutex

Mutex Input 
Control 0

Mutex Input 
Control 1

mutex-req0

mutex-req1

onewins output-en

Req-Latch

Control

E
D Q
L1 E

D Q
L2

E
DQ

L4

zerowins

E
DQ

L3

RS

Q

0

1

mux_select

something-

coming-in-0
something-

coming-in-1

Monitor

Control

takeover
preackout0

preackout1

E

D Q

REG

something-

coming-out

ackin

reqout

dataout

reqin0

reqin1

datain0

datain1

ackout1

ackout0

2 input data 
channels

1 output data 
channel

21



New Arbitration Node: Interfaces (cont.)

Mutex
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Monitoring channels: provide advance info. on incoming traffic 
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New Arbitration Node: Structure
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Mutex: resolves arbitration between 2 input channels 
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New Arbitration Node: Structure (cont.)
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New Arbitration Node: Structure (cont.)
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Two functions: (i) enables channel pre-allocation, (ii) flow control
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New Arbitration Node: Structure (cont.)
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New Arbitration Node: Key Feature (1)
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Early arbitration capability:

Monitoring signals initiate arbitration, before actual flit arrival
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New Arbitration Node: Key Feature (2)
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Simulation: Overview

Two simulations

#1. Single-flit scenario

- friendly case

- illustrate how early arbitration works

#2. Contention between two input channels

- more advanced and adversarial case 

- illustrate how to resolve contention
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Simulation #1: Single-Flit
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Simulation #1: Single-Flit (cont.)
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Simulation #1: Single-Flit (cont.)
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Forward Latency: Single-Flit

Mutex Input 
Control 0

Mutex Input 
Control 1

mutex-req0

mutex-req1

onewins output-en

Req-Latch

Control

E
D Q
L1 E

D Q
L2

E
DQ

L4

zerowins

E
DQ

L3

RS

Q

0

1

mux_select

something-

coming-in-0
something-

coming-in-1

Monitor

Control

takeover
preackout0

preackout1

E

D Q

REG

something-

coming-out

ackin

reqout

dataout

reqin0

reqin1

datain0

datain1

ackout1

ackout0

Mutex

Forward latency = D-latch + XOR2 gate

Channel 
already 
opened

Flit arrives

Flit sent out

33



Simulation #2: Contention
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Both monitoring signals arrive almost simultaneously

34



Simulation #2: Contention (cont.)
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Simulation #2: Contention (cont.)
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Simulation #2: Contention (cont.)
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Simulation #2: Contention (cont.)
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New Arbitration Node: Multi-Flit Design
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Experimental Results: Overview

Two levels of evaluation:
• Node-level: new arbitration node in isolation
• Network-level: 8×8 network with new node

Node-level evaluation: see paper for details

• New arbitration node vs. two previous designs:
- Baseline [Horak/Nowick NOCS-10]

- Predictive [Gill/Nowick NOCS-11]

• 90nm ARM standard cells, gate-level SPICE simulation

 Network-level evaluation: our focus

• Three 8×8 MoT networks: each has 112 router nodes

- Baseline, Predictive, New

• Modeled in structural technology-mapped Verilog
- more accurate model than in [Gill/Nowick NOCS-11]

• 8 synthetic benchmarks: a wide range of traffic patterns
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Benchmarks

 8 diverse benchmarks
• The same as those in NOCS-11

• Represent different network conditions

 Classification

• Three friendly benchmarks:

- (1) Shuffle, (2) Tornado and (7) Single Source broadcast [Dally`03] 

- No contention

• Three moderately adversarial benchmarks:

- (4) Simple alternation with overlap

- (5) Random restricted broadcast with partial overlap

- (8) Partial streaming with random interruption

- No contention for some nodes, light or moderate contention for others 

• Two most adversarial benchmarks:

- (3) All-to-all random and (6) Hotspot8

- Heavy contention at some nodes 42



Network-Level Latency: Single-Flit Design

    Baseline
    Predictive
    New

Latency Comparison for 25% Network Load

 Moderate to significant improvement over all benchmarks
• New vs. baseline: 23-30% improvement

• New vs. predictive: 13-38% improvement 
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Network-Level Latency: Single-Flit Design

    Baseline
    Predictive
    New

Latency Comparison for 25% Network Load

 Perform well for benchmark #3 and #6 (adversarial cases)
• Predictive: even worse than baseline (~20% higher latency)

• New: better than baseline (~25% lower latency)
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Network-Level Latency: Single-Flit Design

    Baseline
    Predictive
    New

1700

Latency Comparison for 25% Network Load

 Excellent latency stability: provides predictable behavior
• Network latency = ~1700ps, across all benchmarks 

through 6 router nodes + 5 hops 

• Important for memory access in CMP’s
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Network-Level Throughput: Single-Flit Design

    Baseline
    Predictive
    New

Saturation Throughput

 New vs. baseline: improvement up to 17% on 6 benchmarks

 New vs. predictive: comparable throughput over all benchmarks
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Network-Level Results: Multi-Flit Design

#1 baseline

#1 new

#3 new

#3 baseline

Latency vs. Input Rate

 Fixed packet length = 3 flits/packet

 Results only for benchmark #1 and #3

 For both benchmarks: 
• ~30% latency and ~14% throughput improvement
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Conclusion

 Introduced a MoT network using “early arbitration”

• Address system-latency bottleneck

• Observe newly entering traffic

- via lightweight shadow monitoring network

• Perform early arbitration + channel pre-allocation

Detailed experimentation and analysis

• Significant improvements in system-latency

- New vs. baseline: 23-30% across all benchmarks

- New vs. predictive: up to 38%
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Future Work

 Narrow channel reservation window

• Decrease time between “channel reservation” and “flit arrival”

• Increase network utility

 Target different topology

• Extend “early arbitration” to 2D-mesh, Clos network, etc.

 Build a complete GALS system

• Add mixed-timing interface         connect cores by the network

 More experiments 

• Real traffic benchmarks

49



Back-up Slides
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Strategy Comparison: Overview

 Three network designs

• Baseline

- [Horak/Nowick, NOCS-10]

- foundation of the research

• Predictive

- [Gill/Nowick, NOCS-11]

- a more recent design

• New 

- the proposed design
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Baseline Arbitration Node: Operation

Input channel 0

Input channel 1
Output channela

r
b

Flit arrives

Waiting for arbitration to complete

Input channel 0

Input channel 1
Output channela

r
b

Arbitration resolves

Flit sent out

Step #1:

Step #2:
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Predictive Arbitration Node: Operation

Dataouta
r
b

Waiting for arbitration to complete

Flit sent out

Datain0

Datain1

Something-coming-0

Something-coming-1

Flit arrives

Biased channel: held open
Flits sent out without waiting

Dataout

Flit sent out

Datain0

Datain1

Something-coming-0

Something-coming-1

Flit arrives

Non-biased channel: entirely blocked

Default Mode: similar operation as “baseline” design

Biased Mode: optimized for one input channel (by prediction)
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New Arbitration Node: Operation

Dataouta
r
b

Advance notification completes arbitration and 
opens the channel well before actual flit arrival

Datain0

Datain1

Something-coming-0

Something-coming-1

Monitoring arrives

Dataouta
r
b

Flits sent out without waiting

Flit sent out

Datain0

Datain1

Something-coming-0

Something-coming-1

Flit arrives

Arbitration already done

Step #1:

Step #2:
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The Role of Monitoring Network

 Predictive design [Gill/Nowick, NOCS-11]

• Facilitates mode change
- from optimized (biased) to unoptimized (default) only

• For safety purpose only
- plays secondary role

New design
• Key component of early arbitration strategy

- directly initiates early arbitration

• For higher performance
- especially system-latency
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