SDG2KPN: System Dependency Graph to Function-level KPN
generation of Legacy Code for MPSoCs

Jude Angelo Ambrose, Jorgen Peddersen, Alvin Labios,

Yusuke Yachide, Sri Parameswaran

Never Stand Sti Faculty of Engineering Computer Science and Engineering

Commercial

Multicore software

generation

MPSoCs

[| [| [| [|
| | | |
§ @ intelitanium 2 & Avpkio __7 Embedded + heterogeneous
§ Intel Itanium 2 with 9MB cache ‘ IBM Power 6.~ i
O Intel Core 2 Duo ’ Intel 8-core Xeon Nehalem-EX
Q
] e 20uad : Intel Core 17 Quad
§ aa Intel 4-core Itanium Tukwila
Snapdragon Dual Tegra Dual
Intel Dual-Core Itanium 2 Snapdragon Quad Tegra Quad
High-end homogeneous -~
‘ OpenMP Fortran standard
OpenMP C/C++ standard
¢ Op / 9 DSWP[3] 4 Our SDG2KPN
¢ FP-MAP[1] @ SPRINT[4]

¢ COMPAAN[2]

SW

THE UNIVERSITY OF NEW SOUTH WALES.

& KPNGen[5]
€ Harmonic[6]

School of Computer Science and Engineering

Legacy Code Usage

* Legacy codes/systems
— Around 70% of the people claim that they have more than 50% legacy systems

Figure 1.Percentage of IT systems states label as “Legacy Systems; N=29

34.5%

35.0%

30.0%

25.0%

20.0%

15.0%

10.0%

5.0% 1

0.0% -

Oto 20 20 to 40 40 to 60 60 to 80 Over 80
percent percent percent percent percent

Source: NASCIO's 2008 National Survey on Legacy Systems and Modernization in the States

* However, porting the existing code for other platforms with effective performance is much
difficult because of unfamiliar code

— ChaIIenge is to garallelise the Iegacx code which was not designed for garallelism

UNSW School of Computer Science and Engineering

THE UNIVERSITY OF NEW SOUTH WALES.

Traditional Processing

APPLICATION

PROCESSOR

: UNSW School of Computer Science and Engineering

== THE UNIVERSITY OF NEW SOUTH WALES

Traditional Processing

PROCESSOR

School of Computer Science and Engineering

Software Balancing using Pipeline

PROCESSOR

School of Computer Science and Engineering

Choosing Hardware Configurations

PROCESSOR PROCESSOR PROCESSOR PROCESSOR PROCESSOR

: % UNSW School of Computer Science and Engineering

IE UNIVERSITY OF NEW SOUTH WALES

Hardware Balancing for Pipeline

PROCESSOR

School of Computer Science and Engineering

Overview

Our goal

e Related work

e SDG2KPN Methodology

* Experiments

e Conclusion

School of Computer Science and Engineering

Our Goal: Legacy Code to Function-level KPN to Pipeline MPSoC

v
 Parent Function Kahn Process =\ | MPSoC
Input Legacy Code Output Partitioned Code Design
(
int main (){ void add(int ¢, int *d){ main subl))y s o
=2, i), =% *d=*d+10 +¢; - int h, a=20, e; voldf:fi(!'n;‘;{;“: C‘d){ g|
foréi=§}{;}i<20;i++){ for(i=0; |<20 |++){ for(i=0;i<20;i++){ ' =
=10; h =10; receive(h); e FIFO
—add(a, &h);— o). =
3;‘,;(@, :’ &h); =770 sub(int e, int f, int *g){ |’ Se:sg;j;f’ &h); giﬁgef}’)){ 5
*g = *g+f+e; i 3 int *g
L }\) } send(e); } —T *g = *gtfte; %
\‘ AN J \} o P
Function call sites to ¢ tgl rete KeNtral); N c
= | itransform 13 \
and then mapjto indi |§1 I\Bﬁgépamepﬁ /W;\\
[
} O/
\ v

School of Computer Science and Engineering

Related Work

« KPNGen from the Daedalus framework (Nikolov et al., DAC’08)
v" KPN is generated by analysing the source code
x manual modification required to the source code
x code and MPSoC platform not automatically generated
x shared variables not supported
« COMPAAN (Kienhuis et al., CODES’00)
v' a commercial tool, generating multicore code
x supporting only Affine Nested Loop Programs using Polyhedral technique
x shared variables, such as globals and pointers are not supported

Our SDG2KPN methodology utilizes a rule-based traversal (static analysis) of the
SDG of any legacy code to find dependencies between functions, supporting
analysis of shared variables which was hitherto not supported

UNSW School of Computer Science and Engineering

SDG2KPN Flow

|
|
|
|
System Dependenc '
Legacy Code > Abstractor > Graph ?SDG) ! : » Networker :
|
|
LD C %_______J
Kahn Process
M 2| T > MP
Network (KPN) apper arget Generator SoC System

]]

k4

Load . Application
Balance Checker | [« < Annotator € Simulator |
Annotated KPN Input Data
v
L Design Final MPSoC
Graph Optimizer | [<—) Tuner >
aph Opt € Constraints System

SW School of Computer Science and Engineering

=" THE UNIVERSITY OF NEW SOUTH WALES

SDG Creation

Legacy Code

—> | Abstractor

—> Dependency Graph

Input Legacy Code /
(. .
int main(){ void add(int c, int *d){
int a=20, h, e; *d=*d+10 +c;
for(i=0;i<20;i++){ }
h=10;
e=add(a, &h);
subl(e, a, &h); || void sub(int e, int f, int *g){
} *g = *g+fte;
& } }

System

(SDG)

System Dependenq}

actual-out actual-in

——— —

School of Computer Science and Engineering

KPN Generation

System Kahn Process
D > >
ependency Graph Networker A Network (KPN)
(SDG)
- '~
” t ~
" User Specifications 'S
>) '~
-~ \ 4
Function Mapper — Binder
2 v
g—-) Traverser
Z

School of Computer Science and Engineering

Rule: actual-in links to an intra-predecessor, ()
which is an actual-out parentl Kahn Process Network (KPN)

N
a NFIFO2
add sub @

Networker

call-site
User Specifications

— — — — — — — —

call-site 1
‘1’ (" int c=0, h=0, e; |
a q I
Function Mapper mt,mam“{ N
int a,b; —
e =add(&c, &h, &a);| |
A ° SUb,(f&(e Kahn Process
VeIVl Network (KPN)
;‘ Actual-in return l

Usen Speufles the functmkg;d be on "Ffe

Actual-in

Actual- |n

1

)r Blnder Rule 6

— Traverser

¥
*
*

--- -
- .

- add

\ a |
’
,

Formal-in $return

Traversal Rules

Il I

Formal-out
Dependency: return variable passed as parameter Formal-in

=
'ﬂ UNSW School of Computer Science and Engineering

THE UNIVERSITY OF NEW SOUTH WALES.

Experiments — Rule Evaluation

No. KPN No. of Generation Estimated
Nodes Rules Time (sec) Manual Gen.
AES 2

2 days
MPEG-2 10 97 21.4 2 months 8k
(enc)
MJPEG 6 75 8.0 3 weeks 2k
H.264 (enc) 9 1064 164.9 6 months 58k
ADPCM 6 27 4.3 1 week 285
(enc)

:: UNSW School of Computer Science and Engineering

THE UNIVERSITY OF NEW SOUTH WALES.

Experiments — MPSoC Executions

No. of Latency KPN Latency Power KPN | Power single
Processors | (Mcycles) single (mW) (mW)
(Mcycles)

b

AES 2 131 3.4% 135 180.54 123.34
h

MJPEG (f) 6 445 16.8% 536 494.39 113.55
h

MJPEG (mb) 6 508 5 15% 536 367.02 113.55

ADPCM 6 224 <«— 113 579.19 131.25

(enc) No speedup due to feedbacks
::: HUNMFSWW School of Computer Science and Engineering

Conclusion

J a novel SDG to KPN conversion methodology is proposed

1 a rule based traversal of the SDG is performed to create
dependencies of variables across functions

1 all the variable constructs of the legacy code, including shared
variables such as globals and pointers, are supported, which
was hitherto not possible.

Do UNSW School of Computer Science and Engineering

THANK YQU

=

e

L
_“

