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Legacy Code Usage

* Legacy codes/systems
— Around 70% of the people claim that they have more than 50% legacy systems

Figure 1.Percentage of IT systems states label as “Legacy Systems; N=29
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Source: NASCIO's 2008 National Survey on Legacy Systems and Modernization in the States

* However, porting the existing code for other platforms with effective performance is much
difficult because of unfamiliar code

— ChaIIenge is to garallelise the Iegacx code which was not designed for garallelism
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Software Balancing using Pipeline

PROCESSOR

School of Computer Science and Engineering




Choosing Hardware Configurations
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Our Goal: Legacy Code to Function-level KPN to Pipeline MPSoC
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Related Work

« KPNGen from the Daedalus framework (Nikolov et al., DAC’08)
v" KPN is generated by analysing the source code
x manual modification required to the source code
x code and MPSoC platform not automatically generated
x shared variables not supported
« COMPAAN (Kienhuis et al., CODES’00)
v' a commercial tool, generating multicore code
x supporting only Affine Nested Loop Programs using Polyhedral technique
x shared variables, such as globals and pointers are not supported

Our SDG2KPN methodology utilizes a rule-based traversal (static analysis) of the
SDG of any legacy code to find dependencies between functions, supporting
analysis of shared variables which was hitherto not supported
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SDG2KPN Flow
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SDG Creation
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int main(){ void add(int c, int *d){
int a=20, h, e; *d=*d+10 +c;
for(i=0;i<20;i++){ }
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KPN Generation
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Rule: actual-in links to an intra-predecessor, ( )
which is an actual-out parentl Kahn Process Network (KPN)
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Experiments — Rule Evaluation

No. KPN No. of Generation Estimated
Nodes Rules Time (sec) Manual Gen.
AES 2

2 days
MPEG-2 10 97 21.4 2 months 8k
(enc)
MJPEG 6 75 8.0 3 weeks 2k
H.264 (enc) 9 1064 164.9 6 months 58k
ADPCM 6 27 4.3 1 week 285
(enc)
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Experiments — MPSoC Executions

No. of Latency KPN Latency Power KPN | Power single
Processors | (Mcycles) single (mW) (mW)
(Mcycles)

b

AES 2 131 3.4% 135 180.54 123.34
h

MJPEG (f) 6 445 16.8% 536 494.39 113.55
h

MJPEG (mb) 6 508 5 15% 536 367.02 113.55

ADPCM 6 224 <«— 113 579.19 131.25

(enc) No speedup due to feedbacks
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Conclusion

J a novel SDG to KPN conversion methodology is proposed

1 a rule based traversal of the SDG is performed to create
dependencies of variables across functions

1 all the variable constructs of the legacy code, including shared
variables such as globals and pointers, are supported, which
was hitherto not possible.
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