

Low Power Design of the Next-Generation High Efficiency Video Coding

Authors: Muhammad Shafique, Jörg Henkel

CES – Chair for Embedded Systems

ces.itec.kit.edu

Outline

Introduction to the High Efficiency Video Coding (HEVC)

HEVC Analysis

- complexity, memory access, thermal
- Power-Efficient HEVC System Design

Conclusion

High Efficiency Video Coding (HEVC)

Ultra-HD (or supervision)

- 7680×4320 ≈ 33 million pixels per frame
- By 2017: 80% 90% global internet traffic

Full HD @ 30fps 1 second ≈ 712 Mbits 1 hour ≈ 2.4 Tbits

- New video compression standards/techniques required
- JCT-VC's High Efficiency Video Coding (HEVC)

~2× compression efficiency compared to H.264

Challenges for Developing HEVC-based Multimedia Systems

HEVC Overview: Encoding Flow

HEVC Overview: Slices and Tiles

HEVC Overview: Tree-Block Structure

CTU Distribution

HEVC Overview: Intra and Inter Prediction

HEVC Intra Prediction

HEVC Inter Prediction

HEVC-Intra: ~2.56× more mode decisions than H.264
HEVC-Inter: ~2.2× more complex than H.264

HEVC Overview: Motion Estimation

- Block Matching (BM) or Motion Estimation (ME)
 - Compression by searching temporal neighbors
 - High energy/time, high compression efficiency (H.264-Inter, HEVC-Inter)

Reference Frame

Current Frame

Residue Frame

Outline

Introduction to the High Efficiency Video Coding (HEVC)

HEVC Analysis

complexity, memory access, thermal

Power-Efficient HEVC System Design

Conclusion

Early PU size prediction may provide significant reduction in computational and energy requirements

HEVC Analysis: CTU Distribution

Memory Access for Motion Estimation

- Memory accesses of HEVC ≈ 3.86× of H.264
- Most of the on-chip memory is wasted (leakage power)

 Adapting the search window size at run-time provides increased potential for leakage power savings

Using a thermal camera setup

DIAS Pyroview thermal camera operates at 50Hz with spatial resolution of 50 µm

Copyright: © Chair for Embedded Systems (CES), Karlsruhe Institute of Technology (KIT), Germany

dual-core processor (1.8 GHz) Src: Intel

Temperature Measurements for HEVC [RaceHorses@37QP vs. 22QP]

Outline

Introduction to the High Efficiency Video Coding (HEVC)

HEVC Analysis

complexity, memory access, thermal

Power-Efficient HEVC System Design

Conclusion

Analysis and Statistics

Parameter	Value	SAD	SSE	SATD	Kbps
Max. CU	4	771	263	51	3001.7
Depth	3	659.15	229.08	42.1	3320.9

Variance and Motion based Classification

	AMP	1	771	263	51	3001.7
		0	665.74	237.1	44.27	3072.92

Complexity Reduction: PU Size Estimation

Time Savings and Video Quality Results

Shafique @ ASPDAC, Jan. 2014

HEVC Thermal Management

HEVC Thermal Management

Power Efficient HEVC Design: Hardware Architecture

Hardware Accelerators

- Occupied Slices (luma)
- Occupied Slices (chroma)

8 PPC

Predictor

External Memory holds the current frame

- High density, low read and write power
- On-chip SRAM memory (FIFO) holds only the current block
 - High read and write speed and low dynamic write power
 - Hides latencies from HEVC engine

- One MRAM buffer holds a full reference frame
- Each column (sector) of reference buffer is power-gated
- Reference read and write masters read and write data to the MRAM buffer

AMBER: Reference Buffer Power Management

Observation: Not all of the search window is used

Block matching algorithm accesses only a small percentage of reference buffer sectors

Power Consumption (4 reference frames)

 Increasing the number of reference frames improves the power consumption of the AMBER system compared to the search window approach

Conclusion

- Comprehensive analysis of HEVC
 - Architecture, power, thermal and complexity
- Challenges posed by HEVC
 - Architectural (memory, reconfiguration, accelerators)
 - Power/thermal (power-gating, configuration control)
 - Complexity (parallelization, many-core, workload balancing)
- Both Hardware and Software need to be optimized while leveraging the application-specific knowledge

Our approach

- Adaptive complexity management
- Video tiling, workload budgeting, CU/PU partitioning
- Power and thermal aware HEVC configuration
- Hybrid video memory hierarchy with content-driven power-gating

ces265: Multi-threaded HEVC Encoder

- Open-source
- C++ based
- Multithreading via pthread API
- One thread of ces265 ≈ 13.2× faster than HM-9.2

Web

- http://ces.itec.kit.edu/ces265/
- Download
 - https://sourceforge.net/projects/ces265/

Acknowledgement

Muhammad Daniel Usman Karim Palomino Khan Claudio M.

Diniz

36

Felipe Sampaio

ces.itec.kit.edu CE

Thank you! Questions?

Web: http://ces.itec.kit.edu/ces265/ Download: https://sourceforge.net/projects/ces265/