
Leveraging Parallelism

in the Presence of Control Flow

on CGRAs

Jihyun Ryoo, Kyuseung Han, and Kiyoung Choi

Design Automation Lab

Department of Electrical and Computer Engineering

Seoul National University

ASP-DAC 2014



Contents

Introduction

Control Flows

Control flows in SIMD, Handling control flows

Distributed Register Files

Problems of distributed register files, Solutions

Application Mapping Framework

Overall flow, From IR to CDFG, Separation, CDFG Mapping

Experiments

Experimental setup, Results

Conclusion

2



CGRA

Coarse-Grained Reconfigurable Architecture

FloRA

PEs (Processing Elements)

• ALUs, shifters, register files

• Word-level granularity

Instructions

• Configuration code

• Change functionality of PEs 

and interconnections

• An instruction may control

multiple PEs (SIMD)

How to compile/map 

kernel code?
3

Introduction



Mapping onto CGRA

4

Multimedia

application

Control Data Flow Graph

Data-intensive 

kernel loop

CGRA

Introduction

Time

Mapping



Control Flows in SIMD

Growing complexity of multimedia application algorithms

Kernels tend to include more conditional branches

Limitation of SIMD

5

PE PE PE
Instruction

stream

Control Flows



Control Flows in SIMD

Growing complexity of multimedia application algorithms

Kernels tend to include more conditional branches

Limitation of SIMD

6

Branch 

taken

Branch 

not taken

Control Flows

PE PE PE
Instruction

stream

Branch 

taken



Control Flows in SIMD

Growing complexity of multimedia application algorithms

Kernels tend to include more conditional branches

Limitation of SIMD

7

Control Flows

Branch 

taken

Branch 

not taken

PE PE PE
Instruction

stream

Branch 

taken



Control Flows in SIMD

Growing complexity of multimedia application algorithms

Kernels tend to include more conditional branches

Limitation of SIMD

Solution – Predication

Converts control flows to data flows

8

Control Flows

Branch 

taken

Branch 

not taken

PE PE PE
Instruction

stream

Branch 

taken



Handling Control Flows

Partial predication 
Execute both (if and else) paths 

Choose the correct result later by using a 
predicated instruction (conditional move)

Full predication
Two types

• Condition-based full predication (CONDFULL)

• Every instruction is predicated

• State-based full predication (STATEFULL)

• Execution depends on the state

• Most instructions are not predicated, but
the executions are effectively predicated

• Nesting is easily implemented

9

Control Flows

select one

if else

if

else

instructions with

false condition

if

else

sleep state

awake state

true condition

state



Handling Control Flows

Condition-based full predication (CONDFULL)

Ex) ARM

Status register per PE

Condition operand per instruction

10

Decide execution of instructions

Control Flows

if (c[i] >= 1) {

x = x+1;

y = y+1; }

else {

x = x-1;

y = y-1; }}

cmp R0 #1

add ge R1 R1 #1

add ge R2 R2 #1

sub lt R1 R1 #1

sub lt R2 R2 #1

C code CONDFULL

if

else



Handling Control Flows

State-based full predication (STATEFULL)

Each PE has a state register to indicate awake or sleep

New instruction – sleep

• sleep cond #n

11

sleep for n cycles

enter sleep state when the condition is true

Control Flows

put the PE into sleep state

if (c[i] >= 1) {

x = x+1;

y = y+1; }

else {

x = x-1;

y = y-1; }}

cmp R0 #1

sleep lt #3

add R1 R1 #1

add R2 R2 #1

sleep uc #2

sub R1 R1 #1

sub R2 R2 #1

C code STATEFULL

if

else



Distributed Register Files

Each PE has its own local register file

 Distributed register files

Good for scalability, wiring, …

PEs cannot directly access other PEs' local register files

Routing is needed

12

Distributed Register Files



Problems of Distributed Register Files

Overhead due to heavy communication

Predicate variables from/to many PEs

increase communications

Overhead due to spilling

Sharing a PE among multiple conditionals

executed in parallel may require 

spilling of the state register

13

Distributed Register Files

PEs

T
im

e



Problems of Distributed Register Files

Overhead due to heavy communication

Predicate variables from/to many PEs

increase communications

Overhead due to spilling

Sharing a PE among multiple conditionals

executed in parallel may require 

spilling of the state register

14

Distributed Register Files

PEs

T
im

e



Problems of Distributed Register Files

Delayed routing in sleep mode

On-demand routing is impossible in sleep mode

Routing is delay until the end sleep mode

 performance degradation

15

Distributed Register Files

PEs

T
im

e

Sleep

Rout

ing



Problems of Distributed Register Files

Delayed routing in sleep mode

On-demand routing is impossible in sleep mode

Routing is delay until the end sleep mode

 performance degradation

16

Distributed Register Files

PEs

T
im

e

Sleep

Rout

ing



Problems of Distributed Register Files

Delayed routing in sleep mode

On-demand routing is impossible in sleep mode

Routing is delay until the end sleep mode

 performance degradation

17

Distributed Register Files

PEs

T
im

e

Sleep

Rout

ing

Rout

ing



Solutions

Duplicate operations for a predicate calculation and map 

them to different PEs

Reduces the amount of communication

18

Distributed Register Files



Solutions

Map operations for different conditionals to different sets 

of PEs in time or space (separation)

Reduces the amount of spilling

19

Distributed Register Files

PEs

T
im

e

PEs

T
im

e

PEs

T
im

e

temporal

separation

spatial

separation



Solutions

Route data in advance if it is available

Avoids delayed routing in sleep mode

20

Distributed Register Files

PEs

T
im

e

PEs

T
im

e

Sleep

Rout

ing

Sleep

Rout

ing



Overall Flow

21

Application Mapping Framework



Overall Flow

22

Application Mapping Framework



From IR to CDFG

Initial

(IR)

23

CFG with DFG nodes

Flat structure

Application Mapping Framework



From IR to CDFG

Initial

(IR)

24

Hierarchical CDFG 

representation

DFG

Unipath block

Multipath block

CDFG

Data dependency

Identify conditionals

Application Mapping Framework



From IR to CDFG

Initial

(IR)

25

Extracting 

parallelism

Hierarchical CDFG 

representation

Application Mapping Framework



From IR to CDFG

Final

Hierarchical CDFG representation with fork DFGs

26

Fork DFGs

(compare operations 

and their predecessors)

Application Mapping Framework



Overall Flow

27

Application Mapping Framework



Separation

Operations in different DFGs need to be separate either in 

time or space 

Achieved by DFG grouping and PE-to-DFG allocation

DFG grouping: Put parallelizable DFGs into a group 

PE-to-DFG allocation: Allocate enough number of PEs to avoid spills

28
CDFG

Group

• DFGs within a group

 spatial separation

• Group to group

 temporal separation

Application Mapping Framework



Overall Flow

29

Application Mapping Framework



CDFG Mapping

Selection of a DFG group

Select a group to be mapped

Route input data for each DFG

If the input data is not already in the allocated PEs

Selection of a DFG in the group

DFG mapping onto the pre-allocated PEs

Map the DFG using ILP

Operations in fork DFGs are duplicated

• Only when it improves the performance

30

Application Mapping Framework



Experimental Setup

Setup

Frontend tool: Clang compiler

ILP solver for mapping DFGs: Gurobi Optimizer 5.0.2

Architecture: FloRA with State-based Full Predication

Applications

DCT 8x8, getANMS, chromakey, SECDED, deblocking filter

31

Experiments



Experimental Results

SERIAL

Serial mapping of DFGs in 

a group 

PARALLEL

Parallel mapping of DFGs 

in a group

PARALLEL-MULTI

Possible duplication of fork 

DFGs

32

PARALLEL-MULTI

 2.51x speedup compared to SERIAL

 5.7% improvement over PARALLEL

Experiments



Conclusion

Kernels of multimedia applications tend to include more 

conditional branches

Parallelization of such kernels is important (Amdahl’s law)

A new mapping framework to handle control flows

State-based full predication for SIMD 

Extract parallelizable threads

Problems and solutions

• Reduce communication overhead by duplicating fork DFGs

• Reduce spill overhead by DFG grouping and PE-to-DFG allocation

• Avoid delayed routing in sleep mode through pre-routing of input data

2.51x performance improvement over conventional serial mapping

33

Conclusion



Thank you!


