Leveraging Parallelism
In the Presence of Control Flow

on CGRAS

Jihyun Ryoo, Kyuseung Han, and Kiyoung Choi

Design Automation Lab
Department of Electrical and Computer Engineering

Seoul National University

DAL 3

ASP-DAC 2014 Ao e

Contents

<Introduction

<Control Flows
v'Control flows in SIMD, Handling control flows

< Distributed Register Files
v'Problems of distributed register files, Solutions

<Application Mapping Framework
v'Overall flow, From IR to CDFG, Separation, CDFG Mapping

< EXperiments
v Experimental setup, Results
<Conclusion

CGRA

Introduction

< Coarse-Grained Reconfigurable Architecture

+FIoRA
v'PEs (Processing Elements)
- ALUs, shifters, register files
- Word-level granularity
v Instructions
- Configuration code

- Change functionality of PEs
and interconnections

- An instruction may control
multiple PEs (SIMD)

<+How to compile/map
kernel code?

AHB

CPU DMA Main Memory IP
| | | |
Configuration Execution Data

it Controller | | Memory
Controller Controller
Configuration Processing | | Data
Memory Element Array Memory
Elgce-nﬂ’gurable Computing Module

-
- -
-

fr,ooes’si;g Element Array

BT~

—_—

Cd
’

’ Processing Element

! Various Inputs

\ Muxt /| Mux2 /
v

Integer ALU
and Shifter T

To Neighbors

(¢ 8]

Introduction

Mapping onto CGRA

Multimedia
application

/7 4 J [J /)
ey a7 7
Vo 7 7 7 /
Data-intensive _
kernel loop Z Time

Control Data Flow Graph CGRA

Control Flows in SIMD

< Growing complexity of multimedia application algorithms
< Kernels tend to include more conditional branches
<Limitation of SIMD

Instruction
stream

Control Flows in SIMD

< Growing complexity of multimedia application algorithms
< Kernels tend to include more conditional branches
<Limitation of SIMD

Instruction
stream

Branch Branch Branch
taken taken not taken

Control Flows in SIMD

< Growing complexity of multimedia application algorithms
< Kernels tend to include more conditional branches
<Limitation of SIMD

Instruction
stream
Branch Branch Bra

taken taken &Qﬁaken

Control Flows in SIMD

< Growing complexity of multimedia application algorithms
< Kernels tend to include more conditional branches
<Limitation of SIMD

Instruction
stream
Branch Branch Bra

taken taken &Qﬁaken

< Solution — Predication
v "Converts control flows to data flows

Control Flows

Handling Control Flows

< Partial predication

v'Execute both (if and else) paths ifl else
v'Choose the correct result later by using a
predicated instruction (conditional move) o/ Select one

<Full predication

v Two types y i instructions with
- Condition-based full predication (CONDFULL) ; false condition
 Every instruction is predicated eBel true condition

- State-based full predication (STATEFULL) :
- Execution depends on the state if | sleep state

* Most instructions are not predicated, but v state
the e.xec.utlons. ar.e effectively predicated else awake state
* Nesting is easily implemented

Control Flows

Handling Control Flows

<Condition-based full predication (CONDFULL)
vEx) ARM

v Status register per PE
E/Condition operand per instruction

Decide execution of instructions

C code CONDFULL
if (cli] >= 1) { cmp RO #1
X = X+1; addge R1 R1#1 | .
y=y+l) addge R2 R2#1 J
else { sublt R1 R1 #17_ else
X = x-1; sublt R2 R2 #1
y=y-1L}}
10

Control Flows

Handling Control Flows

< State-based full predication (STATEFULL)

v'Each PE has a state register to indicate awake or sleep

v'"New instruction — sleep
- sleep cond #n

-E» sleep for n cycles
enter sleep state when the condition is true

put the PE into sleep state

C code STATEFULL
if (c[i]>=1){ cmp RO #1
X = x+1; sleep It #3
y=y+l;} add R1 R1#1
else { add R2 R2#1]— if
X =x-1; sleep uc #2
y=y-1} sub Rl R1 #1]_ e
sub R2 R2 #1 "

Distributed Reqgister Files

<Each PE has its own local register file

—> Distributed register files
v'Good for scalability, wiring, ...

< PEs cannot directly access other PESs' local register files
v'Routing is needed

12

Distributed Register Files

Problems of Distributed Register Files

<Overhead due to heavy communication

v'Predicate variables from/to many PEs
Increase communications

<Overhead due to spilling

v'Sharing a PE among multiple conditionals
executed in parallel may require
spilling of the state register

Time

PEs

< cmpop

1]]
T

If-Else

PEs

Time

~
7

Tols

R

13

Distributed Register Files

Problems of Distributed Register Files

<Overhead due to heavy communication

v'Predicate variables from/to many PEs
Increase communications

<Overhead due to spilling

v'Sharing a PE among multiple conditionals
executed in parallel may require
spilling of the state register

Time

PEs

< cmpop

T11

If-Else

PEs

Time

~
7

ol

A

14

Distributed Register Files

Problems of Distributed Register Files

PEs

N
Cdd

.
<Delayed routing in sleep mode

v'On-demand routing is impossible in sleep mode
v'"Routing is delay until the end sleep mode
-> performance degradation

Time

15

Distributed Register Files

Problems of Distributed Register Files

PEs

N
Cdd

.
<Delayed routing in sleep mode

v'On-demand routing is impossible in sleep mode
v'"Routing is delay until the end sleep mode
-> performance degradation

Time

16

Distributed Register Files

Problems of Distributed Register Files

PEs

N
Cdd

<Delayed routing in sleep mode
v'On-demand routing is impossible in sleep mode
v'"Routing is delay until the end sleep mode
-> performance degradation

Time

17

Distributed Register Files

Solutions

<Duplicate operations for a predicate calculation and map
them to different PEs

v'Reduces the amount of communication

PEs PEs

@< rokorc EmE) L)

nmlll
T T I
= If-Else

If-Else

Time

18

Distributed Register Files

Solutions

<Map operations for different conditionals to different sets
of PEs in time or space (separation)

v'Reduces the amount of spilling
PES\

o 9,‘# temporal
= separation
v
spanal
separatlon o
PEs_ =

_Time

Solutions

<Route data in advance Iif it is available
v'Avoids delayed routing in sleep mode

PEs

Distributed Register Files

PEs

Time
Time

\ 4

20

Application Mapping Framework

Overall Flow

g *

"
-

Selection of

\LIR . L a DFG group
IR2CDFG p v

v . Transfer of input data

Separation \ ,
I S X

CDFG mapping

"1‘;

Code generation

J

lConfiguration

Selection of a DFG

v

DFG mapping onto
preallocated region

*

21

Application Mapping Framework

Overall Flow

g *

"
-

Selection of

\LIR . a DFG group
IR2CDFG . L

V. . Transfer of input data

Separation \ :
I P X

CDFG mapping

'1‘;

Code generation

7

lConfiguration

Selection of a DFG

v

r

DFG mapping onto
preallocated region

*

22

Application Mapping Framework

From IR to CDFG

<Initial

(IR)

° Flat structure
‘?@ /
)
o
olo

CFG with DFG nodes

23

From IR to CDFG

<Initial — < Hierarchical CDFG
(IR) representation

(= &

O y

|ldentify conditionals

Unipath block

—— DFG
Multipath block

— Data dependency

24

Application Mapping Framework

From IR to CDFG

Initial — < Hierarchical CDFG — < EXxtracting
(IR) representation parallelism

(D f e B
S " @@

= E | (@@ —
% k[| \)

7
_ J

25

From IR to CDFG

<Final
v'Hierarchical CDFG representation with fork DFGs
a N\ Fork DFGs

(compare operations
1 and their predecessors)

26

Application Mapping Framework

Overall Flow

g *

"
-

Selection of

\LIR . a DFG group
IR2CDFG . L

v . Transfer of input data

Separation \ ,
I i .

CDFG mapping

'1‘;

Code generation

7

lConfiguration

Selection of a DFG

v

r

DFG mapping onto
preallocated region

*

27

Application Mapping Framework

Separation

<Operations in different DFGs need to be separate either in
time or space
v'Achieved by DFG grouping and PE-to-DFG allocation
v'DFG grouping: Put parallelizable DFGs into a group
v'PE-to-DFG allocation: Allocate enough number of PEs to avoid spills

« DFGs within a group
—> spatial separation

« Group to group
—-> temporal separation

CDFG

28

Application Mapping Framework

Overall Flow

g *

"
-

Selection of

\LIR . a DFG group
IR2CDFG . L

v . Transfer of input data

Separation \ :
I . a

CDFG mapping

'1‘;

Code generation

7

lConfiguration

Selection of a DFG

v

r

DFG mapping onto
preallocated region

*

29

CDFG Mapping

< Selection of a DFG group
v'Select a group to be mapped

<Route input data for each DFG
vIf the input data is not already in the allocated PEs

< Selection of a DFG in the group

<DFG mapping onto the pre-allocated PEs
v'"Map the DFG using ILP

v'Operations in fork DFGs are duplicated
+ Only when it improves the performance

30

Experimental Setup

»3Setup
v'Frontend tool: Clang compiler
v ILP solver for mapping DFGs: Gurobi Optimizer 5.0.2
v'Architecture: FIoRA with State-based Full Predication
< Applications
v DCT 8x8, getANMS, chromakey, SECDED, deblocking filter

31

Experimental Results

+SERIAL
v Serial mapping of DFGs in
4 a group
3 <+PARALLEL
v Parallel mapping of DFGs
in a group
<+PARALLEL-MULTI

v Possible duplication of fork

Application DFG
S
mSERIAL ®m PARALLEL ®= PARALLEL-MULTI

Speedup

dct anms chromakey secded deblocking Avg.

<+PARALLEL-MULTI
v 2.51x speedup compared to SERIAL
v 5.7% improvement over PARALLEL
32

Conclusion

Conclusion

< Kernels of multimedia applications tend to include more
conditional branches

<Parallelization of such kernels is important (Amdahl’s law)

<A new mapping framework to handle control flows
v State-based full predication for SIMD
v Extract parallelizable threads

v'Problems and solutions
- Reduce communication overhead by duplicating fork DFGs
- Reduce spill overhead by DFG grouping and PE-to-DFG allocation
- Avoid delayed routing in sleep mode through pre-routing of input data

v 2.51x performance improvement over conventional serial mapping

33

Thank youl!

