
Leveraging Parallelism

in the Presence of Control Flow

on CGRAs

Jihyun Ryoo, Kyuseung Han, and Kiyoung Choi

Design Automation Lab

Department of Electrical and Computer Engineering

Seoul National University

ASP-DAC 2014



Contents

Introduction

Control Flows

Control flows in SIMD, Handling control flows

Distributed Register Files

Problems of distributed register files, Solutions

Application Mapping Framework

Overall flow, From IR to CDFG, Separation, CDFG Mapping

Experiments

Experimental setup, Results

Conclusion

2



CGRA

Coarse-Grained Reconfigurable Architecture

FloRA

PEs (Processing Elements)

• ALUs, shifters, register files

• Word-level granularity

Instructions

• Configuration code

• Change functionality of PEs 

and interconnections

• An instruction may control

multiple PEs (SIMD)

How to compile/map 

kernel code?
3

Introduction



Mapping onto CGRA

4

Multimedia

application

Control Data Flow Graph

Data-intensive 

kernel loop

CGRA

Introduction

Time

Mapping



Control Flows in SIMD

Growing complexity of multimedia application algorithms

Kernels tend to include more conditional branches

Limitation of SIMD

5

PE PE PE
Instruction

stream

Control Flows



Control Flows in SIMD

Growing complexity of multimedia application algorithms

Kernels tend to include more conditional branches

Limitation of SIMD

6

Branch 

taken

Branch 

not taken

Control Flows

PE PE PE
Instruction

stream

Branch 

taken



Control Flows in SIMD

Growing complexity of multimedia application algorithms

Kernels tend to include more conditional branches

Limitation of SIMD

7

Control Flows

Branch 

taken

Branch 

not taken

PE PE PE
Instruction

stream

Branch 

taken



Control Flows in SIMD

Growing complexity of multimedia application algorithms

Kernels tend to include more conditional branches

Limitation of SIMD

Solution – Predication

Converts control flows to data flows

8

Control Flows

Branch 

taken

Branch 

not taken

PE PE PE
Instruction

stream

Branch 

taken



Handling Control Flows

Partial predication 
Execute both (if and else) paths 

Choose the correct result later by using a 
predicated instruction (conditional move)

Full predication
Two types

• Condition-based full predication (CONDFULL)

• Every instruction is predicated

• State-based full predication (STATEFULL)

• Execution depends on the state

• Most instructions are not predicated, but
the executions are effectively predicated

• Nesting is easily implemented

9

Control Flows

select one

if else

if

else

instructions with

false condition

if

else

sleep state

awake state

true condition

state



Handling Control Flows

Condition-based full predication (CONDFULL)

Ex) ARM

Status register per PE

Condition operand per instruction

10

Decide execution of instructions

Control Flows

if (c[i] >= 1) {

x = x+1;

y = y+1; }

else {

x = x-1;

y = y-1; }}

cmp R0 #1

add ge R1 R1 #1

add ge R2 R2 #1

sub lt R1 R1 #1

sub lt R2 R2 #1

C code CONDFULL

if

else



Handling Control Flows

State-based full predication (STATEFULL)

Each PE has a state register to indicate awake or sleep

New instruction – sleep

• sleep cond #n

11

sleep for n cycles

enter sleep state when the condition is true

Control Flows

put the PE into sleep state

if (c[i] >= 1) {

x = x+1;

y = y+1; }

else {

x = x-1;

y = y-1; }}

cmp R0 #1

sleep lt #3

add R1 R1 #1

add R2 R2 #1

sleep uc #2

sub R1 R1 #1

sub R2 R2 #1

C code STATEFULL

if

else



Distributed Register Files

Each PE has its own local register file

 Distributed register files

Good for scalability, wiring, …

PEs cannot directly access other PEs' local register files

Routing is needed

12

Distributed Register Files



Problems of Distributed Register Files

Overhead due to heavy communication

Predicate variables from/to many PEs

increase communications

Overhead due to spilling

Sharing a PE among multiple conditionals

executed in parallel may require 

spilling of the state register

13

Distributed Register Files

PEs

T
im

e



Problems of Distributed Register Files

Overhead due to heavy communication

Predicate variables from/to many PEs

increase communications

Overhead due to spilling

Sharing a PE among multiple conditionals

executed in parallel may require 

spilling of the state register

14

Distributed Register Files

PEs

T
im

e



Problems of Distributed Register Files

Delayed routing in sleep mode

On-demand routing is impossible in sleep mode

Routing is delay until the end sleep mode

 performance degradation

15

Distributed Register Files

PEs

T
im

e

Sleep

Rout

ing



Problems of Distributed Register Files

Delayed routing in sleep mode

On-demand routing is impossible in sleep mode

Routing is delay until the end sleep mode

 performance degradation

16

Distributed Register Files

PEs

T
im

e

Sleep

Rout

ing



Problems of Distributed Register Files

Delayed routing in sleep mode

On-demand routing is impossible in sleep mode

Routing is delay until the end sleep mode

 performance degradation

17

Distributed Register Files

PEs

T
im

e

Sleep

Rout

ing

Rout

ing



Solutions

Duplicate operations for a predicate calculation and map 

them to different PEs

Reduces the amount of communication

18

Distributed Register Files



Solutions

Map operations for different conditionals to different sets 

of PEs in time or space (separation)

Reduces the amount of spilling

19

Distributed Register Files

PEs

T
im

e

PEs

T
im

e

PEs

T
im

e

temporal

separation

spatial

separation



Solutions

Route data in advance if it is available

Avoids delayed routing in sleep mode

20

Distributed Register Files

PEs

T
im

e

PEs

T
im

e

Sleep

Rout

ing

Sleep

Rout

ing



Overall Flow

21

Application Mapping Framework



Overall Flow

22

Application Mapping Framework



From IR to CDFG

Initial

(IR)

23

CFG with DFG nodes

Flat structure

Application Mapping Framework



From IR to CDFG

Initial

(IR)

24

Hierarchical CDFG 

representation

DFG

Unipath block

Multipath block

CDFG

Data dependency

Identify conditionals

Application Mapping Framework



From IR to CDFG

Initial

(IR)

25

Extracting 

parallelism

Hierarchical CDFG 

representation

Application Mapping Framework



From IR to CDFG

Final

Hierarchical CDFG representation with fork DFGs

26

Fork DFGs

(compare operations 

and their predecessors)

Application Mapping Framework



Overall Flow

27

Application Mapping Framework



Separation

Operations in different DFGs need to be separate either in 

time or space 

Achieved by DFG grouping and PE-to-DFG allocation

DFG grouping: Put parallelizable DFGs into a group 

PE-to-DFG allocation: Allocate enough number of PEs to avoid spills

28
CDFG

Group

• DFGs within a group

 spatial separation

• Group to group

 temporal separation

Application Mapping Framework



Overall Flow

29

Application Mapping Framework



CDFG Mapping

Selection of a DFG group

Select a group to be mapped

Route input data for each DFG

If the input data is not already in the allocated PEs

Selection of a DFG in the group

DFG mapping onto the pre-allocated PEs

Map the DFG using ILP

Operations in fork DFGs are duplicated

• Only when it improves the performance

30

Application Mapping Framework



Experimental Setup

Setup

Frontend tool: Clang compiler

ILP solver for mapping DFGs: Gurobi Optimizer 5.0.2

Architecture: FloRA with State-based Full Predication

Applications

DCT 8x8, getANMS, chromakey, SECDED, deblocking filter

31

Experiments



Experimental Results

SERIAL

Serial mapping of DFGs in 

a group 

PARALLEL

Parallel mapping of DFGs 

in a group

PARALLEL-MULTI

Possible duplication of fork 

DFGs

32

PARALLEL-MULTI

 2.51x speedup compared to SERIAL

 5.7% improvement over PARALLEL

Experiments



Conclusion

Kernels of multimedia applications tend to include more 

conditional branches

Parallelization of such kernels is important (Amdahl’s law)

A new mapping framework to handle control flows

State-based full predication for SIMD 

Extract parallelizable threads

Problems and solutions

• Reduce communication overhead by duplicating fork DFGs

• Reduce spill overhead by DFG grouping and PE-to-DFG allocation

• Avoid delayed routing in sleep mode through pre-routing of input data

2.51x performance improvement over conventional serial mapping

33

Conclusion



Thank you!


