Co-simulation Framework for
Streamlining Microprocessor

Development on
Standard ASIC Design Flow

T. Nakabayashi*, T. Sugiyama*,
T. Sasaki*, E. Rotenberg**,
and T. Kondo*
*Mie University, Japan
**North Carolina State University, USA

Performance gain incurs higher
complexity of a processor

A chip design requires a huge effort.

Multi-core . . heterogeneous I.
| —

Improving research productivity
iIs essential.

Purpose: boost fabrication of
prototype processor

1. Software simulation (e.g., C, C++)
— Performance estimation using high-level language

2. Register transfer level (RTL)
— Cycle accurate simulation

3. Gate level
— Area, power, delay evaluation

4. Transistor level (post layout)
— Detailed evaluation

5. Fabrication

Boost flow

Motivation 1
- Simplify processor prototyping -

Processor architects’ interest.

— —
Exception)/U Benchmarks
Register file, Decoder|||| Interrupt - spec 2000
handling N‘| - MiBench
. MMU I{Ilj
Oo00 logic || ALU TLR oS
—~—

Desirable to avoid implementation.

Motivation 2
- Reduce simulation time -

Skip Initialization or skip to meaningful point.

e.g., gzip (spec 2000)
start SimPoi .
244 minutes Deswal;le (0
reduce time to
844 days reach the point
13,757 days POt
10 MIPS 0.002 MIPS 0.00001 MIPS
C++ simulator RTL design Gate-level

[1] T. Sherwood, et.al., 10" ASPLOS, 2002

Streamlining mechanism (1/2)
- System call emulation -

« Handle standard I/O, file op., network

« System calls are interface with OS kernel

Privileged mode (MMU, IPR)
Peripheral circuits (serial port, disk)

IN software simulators

———————————————————————————————

Emulate a system call as
an one-cycle-instruction

\

o o o o o e -

Simplify processor

———

/ 6

Streamlining mechanism (2/2)
- Fast skip and state restoration -

For evaluation

we execute a core part of programs
due to computational complexity.

Billions of insts. should be forwarded.

« Software simulators provide
—fast skip mode and checkpoint mechanism.

Outline

Introduce streamlining mechanisms
iInto standard ASIC design flows.

1. System call emulation

iIntroduce an off-chip emulator.

2. [Fast skip and state restoration

propose a checkpoint mechanism.

Co-simulation framework

take over

architectural state| i Cross-check

Cycle-accurate behavior

functional simulator |

processor design
system call

one cycle emulation :

functional simulator :

>: >

fast-skip or i Instruction set level behavior
restore checkpoint time:
>

Region of interest

g

Outline

1. System call emulation

iIntroduce an off-chip emulator.

10

System call emulation

System call emulation enables

* processor runs programs without OS.

— Avoid implementation for system kernel and
preparation of peripheral devices.

\/7

Researchers can focus on microarchitecture.

Challenge on ASIC flows

How to interact between processor and emulator.

11

Sequence of
a system call emulation

(D emulator must detect the occurrence.
(@ architectural state (reqister file) is needed.
@ processor must get feedback of the result.

9,
system call | @ .
A
RF | | <
processor (RTL, netlist, or ©) emulator (C++)

transistor-level circuit) 12

Challenges of
a system call emulation

(D emulator should know the occurrence.
(@ architectural state (reqister file) is needed.
@ processor must get feedback of the result.

How to detect? || How to read/write register values

@ 4= | __from/toinside of processor?

system call M

» N
RF | \ <
processor (RTL, netlist, or ©) emulator (C++)

transistor-level circuit) 13

Concept of proposed off-chip
emulator

processor design
(RTL, gate-level,
transistor level)

—I—I—I— Memory bus

Deal with a memory
mapped device.

e

Main memory Off-chip emulator

14

Proposed off-chip emulator

processor design
(general design)

load/store

0000.0000

7fd0.0000

memory
Off-chip emulator

memory
mapped
trigger

$0

$31

PC

bfc003d0 < syscall>:
lur kO, 0x7fdO

[* save architectural state */
sw $1, 0x104(kO0)

sw $31, 0x17c¢(k0)
[* trigger for system call */
sw 0x01, 0x0(k0)
[* restore the result */
lw $1, 0x104(k0)
lw $31, 0x17c(kO)

15

Outline

2. [Fast skip and state restoration

propose a checkpoint mechanism.

16

Checkpoint mechanism overview

Insts.

program

checkpoint file

=

dump restore

bfcO0000 < reset>:
lui kO, 0x7fdO
/* restore register file */
lw $1, 0x104(kO0)

lw $31, O0x17c(k0)

[* restore program counter */
lw k1, O0x278(k0)
jr ki

17

Insts.

Challenge of checkpoint

program

fopen

fwrite A

open
OS X

write
OS

file close

file

.

restore

checkpoint file

checkpoint creation phase

File is not open!

resume phase y

Insts.

Checkpoint mechanism of
FabScalar[2]

program

fopen

fwrite A

open
OS >
write
OS
-
dump =
dump .
) write
~> 0OS

file

Save architecture states
after system calls in ROI.

Eij ., restore
N S

ROI: region of interest
[2] N. K. Choudhary, et.al., ISCA-38, 2011 19

Problems of FabScalar’s
checkpoint (1/2)

_ program
insts.

fopen Once checkpoint is
created for the region.

fwrite A
Eij\\resto‘re
Q_Fi____________ R e SO S

1 restore

fwrite C Cannot extend ROI.

20

Problems of FabScalar’s
checkpoint (2/2)

rogram -
insts. Prog file
open
fopen OS
| - write Non-deterministic
fwrite A execution results in
another path.
CP I 7 —
A
write lﬁ
ROI ||| fwrite B OS fwrite W

fwrite C Cannot correctly restore.

Proposed checkpoint mechanism

ot (P odram file file
open open
fopen | .~ OS 7 0S
write write
fwite A |~ SO° . 0S
S mp vrestore | Execute only
CP NY system calls.
i L ;@;"_‘_j;;; """"""
e write
fwrite B
write
fwrite C

Demonstration

Hardware platform: Intel Core 1-7-2600@3.40GHz,

4GB memory
gzip mcf | bzip | parser | twolf
Gate-level® (day) 13,757| 6,389 11,297 | 13,260 12,319
RTL design! (day) 844 | 326 715 680 645
fast-skip (min.) 244 | 103 206 210 212
checkpoint (sec.) 0.50| 0.68| O0.77 3.84| 0.53
skipped insts. (100 million) 1189| 553 977 1146, 1066
checkpoint file size (MB) 832| 326 384 1780 119
system calls 65| 116 101| 1027 133

lEstimated by million instructions per second (MIPS) value
RTL design is 4-way superscalar generated by FabScalar. 23

Conclusion

* To boost processor design.

—Provide off-chip system call emulator.

» Execute programs without booting OS.

—Introduce checkpoint into ASIC flows.

 Shorten turnaround time.

* Future work
—Demonstration using fabricated chip.
—The entire framework will be open.

24

