
Co-simulation Framework for 

Streamlining Microprocessor 

Development on  

Standard ASIC Design Flow 

T. Nakabayashi*, T. Sugiyama*, 

T. Sasaki*, E. Rotenberg**, 

and T. Kondo* 

*Mie University, Japan 

**North Carolina State University, USA 

 1 



Performance gain incurs higher 

complexity of a processor 

A chip design requires a huge effort. 

Improving research productivity 

is essential. 

Multi-core heterogeneous 

2 



Purpose: boost fabrication of 

prototype processor 

1. Software simulation (e.g., C, C++) 

→ Performance estimation using high-level language 

2. Register transfer level (RTL) 

→ Cycle accurate simulation 

3. Gate level 

→ Area, power, delay evaluation 

4. Transistor level (post layout) 

→ Detailed evaluation 

5. Fabrication 

Boost flow 

3 



Motivation 1 

- Simplify processor prototyping - 

4 

Register file 

OoO logic 

Decoder 

ALU 

Processor architects’ interest. 
 

Benchmarks 

- spec 2000 

- MiBench 

 

Exception 

Interrupt 

handling 

MMU 

TLB 
OS 

Desirable to avoid implementation. 



Motivation 2 

- Reduce simulation time - 

5 

C++ simulator 

10 MIPS 

RTL design 

0.002 MIPS 

Gate-level 

0.00001 MIPS 

e.g., gzip (spec 2000) 

start SimPoint [1] 

244 minutes 

844 days 

13,757 days 

[1] T. Sherwood, et.al., 10th ASPLOS, 2002 

Skip initialization or skip to meaningful point. 

Desirable to 

reduce time to 

reach the point. 



Streamlining mechanism (1/2) 

- System call emulation - 

• Handle standard I/O, file op., network 

• System calls are interface with OS kernel 
Privileged mode (MMU, IPR) 

Peripheral circuits (serial port, disk) 

simulator 

system call 

Emulate a system call as 

an one-cycle-instruction 

in software simulators 

Simplify processor 
6 



we execute a core part of programs 

due to computational complexity. 

Streamlining mechanism (2/2) 

- Fast skip and state restoration - 

• Software simulators provide 

– fast skip mode and checkpoint mechanism. 

For evaluation 

Billions of insts. should be forwarded. 

7 



Outline 

introduce an external emulator. 

Introduce streamlining mechanisms 

into standard ASIC design flows. 

1. System call emulation 

 

2. Fast skip and state restoration 

propose a checkpoint mechanism. 

introduce an off-chip emulator. 

8 



Co-simulation framework 

9 

time 

take over  

architectural state 

fast-skip or 

restore checkpoint 

processor design 

Cycle-accurate behavior 

Region of interest 

functional simulator 

cross-check 

system call 

one cycle emulation 

instruction set level behavior 

functional simulator 



Outline 

introduce an external emulator. 

Introduce streamlining mechanisms 

into standard ASIC design flows. 

1. System call emulation 

 

2. Fast skip and state restoration 

propose a checkpoint mechanism. 

introduce an off-chip emulator. 

10 



System call emulation 

• processor runs programs without OS. 

– Avoid implementation for system kernel and 

preparation of peripheral devices. 

System call emulation enables 

How to interact between processor and emulator. 

Challenge on ASIC flows 

Researchers can focus on microarchitecture. 

11 



Sequence of 

a system call emulation 

① emulator must detect the occurrence. 

② architectural state (register file) is needed. 

③ processor must get feedback of the result. 

processor (RTL, netlist, or  

transistor-level circuit) 

emulator (C++) 

①  

RF 

②   

③   

system call 

12 



Challenges of 

a system call emulation 

① emulator should know the occurrence. 

② architectural state (register file) is needed. 

③ processor must get feedback of the result. 

processor (RTL, netlist, or  

transistor-level circuit) 

emulator (C++) 

①  

RF 

②   

③   

system call 

How to read/write register values 

from/to inside of processor? 
How to detect? 

13 



Concept of proposed off-chip 

emulator 

Off-chip emulator 

processor design 

(RTL, gate-level, 

transistor level) 

14 

Memory bus 

Main memory 

Deal with a memory 

mapped device. 



Proposed off-chip emulator 

Off-chip emulator 

processor design 

(general design) 

load/store 

memory 

0000.0000 

7fd0.0000 

memory 

mapped 

trigger 

$0 

$31 

PC 

: 

: 

: 

bfc003d0 <__syscall>: 

 lui  k0,     0x7fd0 

/* save architectural state */ 

 sw $1,     0x104(k0) 

  : 

 sw $31,   0x17c(k0) 

/* trigger for system call */ 

 sw 0x01, 0x0(k0) 

/* restore the result */ 

 lw  $1,     0x104(k0) 

 lw  $31,   0x17c(k0) 
15 



Outline 

introduce an external emulator. 

Introduce streamlining mechanisms 

into standard ASIC design flows. 

1. System call emulation 

 

2. Fast skip and state restoration 

propose a checkpoint mechanism. 

introduce an off-chip emulator. 

16 



Save architecture state 

(register values and memory 

contents) at checkpoint. 

Checkpoint mechanism overview 

program 
insts. 

CP 
dump restore 

checkpoint file bfc00000 <__reset>: 

 lui  k0,     0x7fd0 

/* restore register file */ 

 lw  $1,     0x104(k0) 

   :     :            : 

 lw  $31,   0x17c(k0) 

/* restore program counter */ 

 lw  k1,     0x278(k0) 

 jr    k1 

17 



Challenge of checkpoint 

program 
insts. 

CP 

dump 

restore 

checkpoint file 

fopen OS 

file 

fwrite A 

file close 

fwrite B 

OS 

open 

write 

File is not open! 

18 
checkpoint creation phase resume phase 



Checkpoint mechanism of 

FabScalar[2] 

program 
insts. 

CP 

fopen OS 

file 

fwrite A 

fwrite B 

OS 

open 

write 

ROI OS 
write 

dump restore 

dump restore 

fwrite C ROI: region of interest 

Save architecture states 

after system calls in ROI. 

[2] N. K. Choudhary, et.al., ISCA-38, 2011 19 



Problems of FabScalar’s 

checkpoint (1/2) 

program 
insts. 

CP 

fopen 

fwrite A 

fwrite B 

ROI 

restore 

restore 

fwrite C Cannot extend ROI. 

Once checkpoint is 

created for the region. 

20 



Problems of FabScalar’s 

checkpoint (2/2) 

program 
insts. 

CP 

fopen OS 

file 

fwrite A 

fwrite B 

OS 

open 

write 

ROI OS 
write 

fwrite C 

fwrite W 

Non-deterministic 

execution results in 

another path. 

Cannot correctly restore. 
21 



Proposed checkpoint mechanism 

program 
insts. 

CP 

fopen OS 

file 

fwrite A 

fwrite B 

OS 

open 

write 

fwrite C 

file 

dump 

OS 
open 

OS 
write 

restore 

write 
OS 

write 
OS 

22 

Execute only 

system calls. 



Demonstration 

Hardware platform: Intel Core i-7-2600@3.40GHz, 

       4GB memory 

gzip mcf bzip parser twolf 

Gate-level¹ (day) 13,757 6,389 11,297 13,260 12,319 

RTL design¹ (day) 844 326 715 680 645 

fast-skip (min.) 244 103 206 210 212 

checkpoint (sec.) 0.50 0.68 0.77 3.84 0.53 

skipped insts. (100 million) 1189 553 977 1146 1066 

checkpoint file size (MB) 832 326 384 1780 119 

system calls 65 116 101 1027 133 

¹Estimated by million instructions per second (MIPS) value 

RTL design is 4-way superscalar generated by FabScalar. 23 



Conclusion 

• To boost processor design. 

– Provide off-chip system call emulator. 

• Execute programs without booting OS. 

– Introduce checkpoint into ASIC flows. 

• Shorten turnaround time. 

• Future work 

– Demonstration using fabricated chip. 

– The entire framework will be open. 

24 


