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Verification under Process Variations
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Slew Rate > 10V/𝜇s ? Voffset < 15mV ? PSRR > 100dB ?Phase Margin > 60° ?

M1 M2

M3IBias

M5 M7

M6

Cc

M8

VpVn
Vout

M4

Model relationship between parameters and response

fX(x)

x

fY(y)

y

Junction depth of M2

Gate oxide thickness of M3



Performance Modeling
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A model inference problem
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OLS Regression
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Problem: Over-Fitting. 
!
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• m: # data points 
• n: # parameters 
• k: polynomial degree

Ordinary Least Squares (OLS)  

    min Σi∊[1,m] [y(i) - f(x1(i), x2(i), …, xn(i))] 
 s.t. 
 f is a degree-k polynomial
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• m: # data points 
• n: # parameters 
• k: polynomial degree

Ordinary Least Squares (OLS)  

    min Σi∊[1,m] [y(i) - f(x1(i), x2(i), …, xn(i))] 
 s.t. 
 f is a degree-k polynomial

n = 25, m ≥ 3276

25 parameters 
need at least 3276 

simulations.

n = 10, m ≥ 286

10 parameters 
need at least 286 

simulations.



A Simple Buck Converter

!6

Process variations 
L ~ U(1.8,2.2)𝝁H, C ~ U(9,11)𝝁F 

Specification 
𝞓v ≤ 30mV

L=2uH

C=10uF

vctrl

vp
vn

VVg

∆v

∆v

Regression using cubic polynomial 

 𝞓v ≈ f(L,C) = c00 + c10L + c01C + c11LC + … + c30L3 + c03C3
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Specification 
𝞓v ≤ 30mV
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• Ordinary Least squares 
 𝞓v ≈ 0.031 − 0.002L − 0.009C − 0.002L2 − 0.005C2 + 

 0.003LC + 0.004L2C − 0.002LC2 − 0.000L3 + 0.010C3

• Proposed sparse method 
 𝞓v ≈ 0.028 − 0.001L − 0.001C

Regression using cubic polynomial 

 𝞓v ≈ f(L,C) = c00 + c10L + c01C + c11LC + … + c30L3 + c03C3



Sparse Regression

!7

Sparsity = Predict and drop unimportant terms

Given a set of basis functions 

{f1(x), f2(x), f3(x), …} 

g(x) = c1f1(x) + c2f2(x) + c3f3(x) + …

f1(x)
f2(x)

f3(x)

✗

g(x)

Important Important
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Does Sparsity Alone Suffice?
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Numerous techniques exist for sparse regression 

• For example, LASSO, basis pursuit, etc. 

• But is sparsity enough?

Model 1 

c00 + c21x2y - c12xy2 + c30x3 - c04y4

Model 2 

c00 - c10x - c01y

Which one of the following two models is better?



Sparse Regression: 
Algorithm Overview
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basis functions gd(x)

Data matrix 
X (m x n), Y(m x 1) 

Residual R = Y
Input:
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Is R small enough 
compared to Y?

Increase 
degree d

Construct a set of 
basis functions of 

degree-d

Degree Candidate basis 
functions

Important 
basis functions gd(x)

0 {1} {1} c00

1 {x1, x2} {x1} c10x1

2 {x12, x22, x1x2} {x12, x22} c20x12 + c02x22

Drop unimportant 
terms

Compute gd(x) using 
X and R 

R = R - gd(X)

Data matrix 
X (m x n), Y(m x 1) 

Residual R = Y
Input:



Sparse Regression: 
Algorithm Overview

!9

g(x) = Σgd(x) 
Recompute coefs. 

using X and Y
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g(x) = c00 + c10x1 + c20x12 + c02x22Drop unimportant 
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Residual R = Y
Input:



Sparse Regression: 
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Sparse Regression: 
Lower Degree Goes First
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Degree
Candidate 

basis functions
Important 

basis functions
gd(x)

0 {1} {1} c00

1 {x1, x2} {x1} c10x1

2 {x12, x22, x1x2} {x12, x22} c20x12 + c02x22

… …

g(x) = c00 + c10x1 + c20x12 + c02x22

Include higher-
degree terms 
only when necessary 
• Easier to interpret 

• More efficient to 

evaluate



Sparse Regression: 
Importance Estimation via gPC
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f1(x)
f2(x)

f3(x)

g(x)

gPC: generalized polynomial chaos

* Xiu Numerical Methods for Stochastic Computation: A Spectral Method Approach ’10	



Distribution Polynomial Example

Normal Hermite
f1(x) = x, f2(x) = x2 - 1 

f3(x) = x3 - 3x

Uniform Legendre
f1(x) = x, f2(x) = x2 - 1/3 

f3(x) = x3 - 3/5x

hfi(x), fj(x)i =
Z

fi(x)fj(x)dFX(x) = �ij�i

Kronecker delta
Constant

g(x) = c1f1(x) + c2f2(x) + c3f3(x) + …

hfi(x), g(x)i = ci�i



Sparse Regression: 
Importance Estimation via gPC
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— Impossible b/c analytical form of g(x) is unknown

Estimation of ci via Monte-Carlo sampling

Use the estimation to drop terms if
ĉi  ↵max(ĉ1, ĉ2, . . . )

hfi(x), g(x)i =
Z

fi(x)g(x)dFX(x)

Z
fi(x)g(x)dFX(x) ⇡

NX

j=1

fi(x
(j))g(x(j))

ci ⇡ ĉi =
1

�i

NX

j=1

fi(x
(j))g(x(j))

⇣
x

(1)
, . . . , x

(N)
⌘
⇠ FX(x)



Sparse Regression: 
Single Degree Approximation
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Estimated coefficients are not accurate enough

min Σi∊[1,m] (y(i) - g2(x1(i),x2(i))) 
s.t. 
g2(x) = c20x12 + c02x22

Use regression to improve accuracy, i.e.,

• OLS if there are enough data to avoid over-fitting 
• Otherwise, use L1 regularization, e.g., LASSO

* Tibshirani J. of Royal Stats. Society ’96	



Construct a set of 
basis functions of 

degree-d

Drop unimportant 
terms

Compute gd(x) using 
X and R 

R = R - gd(X)



Sparse Regression: 
Final Approximation
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Recomputing coefficients of 
g(x) usually yields an overall 
better accuracy

g(x) = Σgd(x) 
Recompute coefs. 

using X and Y

Is R small enough 
compared to Y?

Increase 
degree d

Construct a set of 
basis functions of 

degree-d

Drop unimportant 
terms

Compute gd(x) using 
X and R 

R = R - gd(X)



Application: 
Statistically Sound Model Inference

!15

• A simulation-based model inference technique 

• Used for statistical verification of analog circuits 

• Three phases 

1. Regression 

2. Bloating 

3. Verification

Response

Parameter

* Zhang et al. ICCAD’13
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Application: 
Statistically Sound Model Inference

!15

• A simulation-based model inference technique 

• Used for statistical verification of analog circuits 

• Three phases 

1. Regression 

2. Bloating 

3. Verification

Response

Parameter

Specification 
y ∊ [a, b]

* Zhang et al. ICCAD’13
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Process variations 
24 normally distributed parameters 

Specification 
fosc ∊ 0.98GHz ± 50MHz

104-MC SMI (Degree-3 poly) Sparse-SMI

Yield #Sims SMI 
Time

Predicted 
Yield #Sims SMI 

Time Degree Predicted 
Yield

51% 3213 408s 46% 397 19s 3 45%



Experimental Results
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Process variations 
32 normally distributed parameters 

Specification 
1.  Vos ≤ 50mV  
2.  DC-Gain ≥ 60dB  
3.  Bandwidth ≥ 5MHz 

M1 M2

M3IBias

M5 M7

M6

Cc

M8

VpVn
Vout

M4

104-MC SMI (Degree-3 poly) Sparse-SMI

Yield #Sims SMI 
Time

Predicted 
Yield #Sims SMI 

Time Degree Predicted 
Yield

61% 8701 4.2h 58% 393 8s 1 58%

65% 8618 4.9h 61% 380 101s 3 60%

100% 8741 5.1h 100% 361 7s 1 100%



Conclusion
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• A sparse regression algorithm based on gPC 

• Use limited data to fit response surfaces with many parameters 

• Produce low-degree approximation 

• Applied to our statistically sound model 
inference framework


