
Rethinking Error Injection for Effective Resilience

Shahrzad Mirkhani1 Hyungmin Cho2 Subhasish Mitra2 Jacob Abraham1

1University of Texas at Austin

2Stanford University

ASP-DAC, 2014

(UT Austin, Stanford) Rethinking Error Injection January 2004 1 / 29



Motivation

(UT Austin, Stanford) Rethinking Error Injection January 2004 2 / 29



Motivation

Motivation

Soft error analysis is an involved process

Single bit-flip on flip-flops are accurate but slow

High-level models are fast but inaccurate

Error propagation analysis for a massive error injection is done

Need to rethink conventional approaches to error injection

(UT Austin, Stanford) Rethinking Error Injection January 2004 3 / 29



Motivation

Hardware vs. Software-based Error Model

Hardware-based (HW-based) error model
I Single bit-flip on flip-flop
I A close model to radiation-based error

Software-based (SW-based) error model
I Injection on memory bits/register bits
I Single bit-flips
I Usually follow uniform distributions
I Some models inject error on used memory elements/registers

(UT Austin, Stanford) Rethinking Error Injection January 2004 4 / 29



Motivation

Error Propagation to SW Visible Components

How to compare SW- and HW-based errors?

A SW-based error can be equal to a HW-based error
I Models ALL propagations of a HW-based error to SW visible

components
I SW visible components consist of registers and memory elements

A HW-based error might propagate to more than one SW-visible
component

Most SW-based error models inject single bit-flip on a SW visible
component

(UT Austin, Stanford) Rethinking Error Injection January 2004 5 / 29



Motivation

Error Propagation to Software Visible Components - cont’d

(UT Austin, Stanford) Rethinking Error Injection January 2004 6 / 29



Motivation

A Typical SW-based Error Model

(UT Austin, Stanford) Rethinking Error Injection January 2004 7 / 29



Motivation

A More Realistic SW-based Error Model

(UT Austin, Stanford) Rethinking Error Injection January 2004 8 / 29



Frequently Asked Questions

(UT Austin, Stanford) Rethinking Error Injection January 2004 9 / 29



FAQ

What is the big fuss about soft errors? Can’t we just
re-execute the application to deal with them?

Re-run not possible in real-time systems
I Voyager 2 data loss for weeks

[Photo from Wikipedia]

Silent Data Corruption (SDC)
I Important in life-critical systems

(UT Austin, Stanford) Rethinking Error Injection January 2004 10 / 29



FAQ

What are viable ways of evaluating the resilience of a
design to soft errors?

Architectural analysis
I Like Architectural Vulnerability Factor (AVF) measurement
I Lack of generality
I Can be involved for some structures

Error injection
I Radiation to a chip
I Modeling error and the design on FPGA
I Modeling error in a simulation environment

Place of injection
I On any wire/component including combinational logic
I On any memory component (flip-flops as well as system memory)
I On SW-visible components only

(UT Austin, Stanford) Rethinking Error Injection January 2004 11 / 29



FAQ

What would be a good error model, and why? Is there any
problem with this error model?

Making logic (vs. memory arrays) error tolerant is expensive

Important to be able to analyze error resilience of flip-flops

Analyzing logic gate output errors not necessary [Seifert et al., 2012]

Single bit-flip on a flip-flop is a golden error model

Simulation speed too low for applications with reasonable size

(UT Austin, Stanford) Rethinking Error Injection January 2004 12 / 29



FAQ

Why would we consider the single bit-flip on flip-flops the
“gold standard”?

Results of single bit-flip on flip-flops very close to irradiation [Sanda
et al., 2008]

Can be implemented in simulation- or emulation-based environments

Low speed of simulation-based analysis is mitigated by hierarchical
methods

Still too slow!

(UT Austin, Stanford) Rethinking Error Injection January 2004 13 / 29



FAQ

What are the benefits and problems with only considering
single bit-flips in SW-visible components?

Several models consider single bit-flip on SW-visible components
I a random bit of a random register
I a random bit of a random memory element
I a random bit of a register to be written
I a random bit of a memory element to be written

Can be analyzed faster than the gold standard model
I Can be executed by fast instruction set simulators

Inaccurate! SDC and DUE rates different than gold standard results

(UT Austin, Stanford) Rethinking Error Injection January 2004 14 / 29



FAQ

Why do we call the results of SW-based error injection
inaccurate?

[Cho et al., 2013]
(UT Austin, Stanford) Rethinking Error Injection January 2004 15 / 29



FAQ

Is comparing HW-based injection with SW-based bit-flips
apples to apples?

SW-based injections used for soft-error vulnerability analysis?

A need for comparing with a golden model

We need to compare SW-based bit-flips with HW-based injection

(UT Austin, Stanford) Rethinking Error Injection January 2004 16 / 29



FAQ

Wouldn’t the performance of HW-based injection make
this approach prohibitively expensive?

Analysis needs register-transfer- or gate-level to some extent

Low simulation speed compared to instruction set simulation

Might be able to perform fast but more accurate SW-based injections
I Abstract the results of a small sample of HW-injections
I A guide for a better SW-based error model

The answer depends on the risks to have unreliable systems

(UT Austin, Stanford) Rethinking Error Injection January 2004 17 / 29



FAQ

What would we do if we did not have access to the
detailed hardware design, RTL or lower level descriptions?

The only possibility is SW-based injection

Still can utilize pattern of HW-based bit-flips of past experiences

(UT Austin, Stanford) Rethinking Error Injection January 2004 18 / 29



FAQ

What are some of the statistics of the errors seen at the
SW-level due to a single bit-flip at the HW-level?

Error propagation depends on
I Circuit structure
I Workload
I Time of injection

HW-based error injection experience done
I On out-of-order IVM and in-order LEON3 processors
I SPEC2000 benchmarks as workload
I MinneSpec input sets as workload inputs
I 160,000 injections for IVM (simulation)
I 320,000 injections for LEON3 (FPGA)

Error propagations to register file is studied

(UT Austin, Stanford) Rethinking Error Injection January 2004 19 / 29



Experimental Results

(UT Austin, Stanford) Rethinking Error Injection January 2004 20 / 29



Experimental Results

Propagation Types

Spatial
I Register bit position(s) in each propagation
I The number of affected bits in each propagation

Temporal
I The number of times error propagated to a register
I The average time interval between each propagation

(UT Austin, Stanford) Rethinking Error Injection January 2004 21 / 29



Experimental Results

Propagation Rate to Each Bit in Registers

(UT Austin, Stanford) Rethinking Error Injection January 2004 22 / 29



Experimental Results

Propagation Rate to Each Bit in Registers-cont’d

IVM
I 14% of error propagations happen at bit 0
I 88% of error propagations happen at bits 0-31

LEON3
I The distribution is close to uniform
I Slightly more propagations happen at bits 0-15

(UT Austin, Stanford) Rethinking Error Injection January 2004 23 / 29



Experimental Results

Simultaneous Propagation to Certain Number of Bits in
Registers

(UT Austin, Stanford) Rethinking Error Injection January 2004 24 / 29



Experimental Results

Simultaneous Propagation to Certain Number of Bits in
Registers-cont’d

IVM
I Only 15% of propagations caused single bit flip in registers
I 11% of propagations caused 2 simultaneous bit flips in registers
I More than 60% of propagations cause 2-10 bit-flips
I 16+ bit flips happen rarely compared to 15- bit flips

LEON3
I Single bit flips are very probable (around 45% of times)
I 2 and 3 simultaneous bit flips happen more frequently than 4+ bit flips
I Although 2+ bit flips is not very probable, it should be considered

(UT Austin, Stanford) Rethinking Error Injection January 2004 25 / 29



Experimental Results

Cycle Interval Between Each Propagation to a Register

(UT Austin, Stanford) Rethinking Error Injection January 2004 26 / 29



Experimental Results

Cycle Interval Between Each Propagation to a
Register-cont’d

For the cases of propagation in different cycles (multi-cycle
propagation)

35% of the propagations are multi-cycle propagations

How many cycles are propagations apart from each other?

Done for IVM only

30% of multi-cycle propagations happen after 1 cycle

Around 40% of multi-cycle propagations happen between 2 to 5 cycles

Propagations happen between 6+ cycles are rare

(UT Austin, Stanford) Rethinking Error Injection January 2004 27 / 29



Conclusions

Single bit-flip SW-based injection means that HW-based error
propagations:

I are uniformly distributed for each bit
I happen only in 1 bit (no simultaneous propagations)
I happen only one time during an injection

Statistics on error propagation depend on the design architecture
I LEON3 statistics closer to the single bit-flip SW-based model
I Less inaccuracy for SW-based injection in LEON3 vs. IVM expected

The random error generator function should be changed to consider:
I number of simultaneous bit flips
I bit position of the bit flip(s)
I multi-cycle injections
I cycle interval between each bit flip (in multi-cycle injections)

(UT Austin, Stanford) Rethinking Error Injection January 2004 28 / 29



Work in Progress

Analyzing propagations to memory elements

Analyzing the error patterns in memory elements and registers
I Which bits are more probable to become erroneous at the same time?

Changing the random error generator based on the information

Injection based on the new random error generator and calculate the
new inaccuracy level

(UT Austin, Stanford) Rethinking Error Injection January 2004 29 / 29


	Motivation
	
	FAQ
	
	Experimental Results
	

