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 Motivation: Faster Algorithms 

 Shor’s factoring algorithm (Superpolynomial) 

 Grover’s search algorithm (Polynomial) 

 Quantum walk on binary welded trees (Superpolynomial) 

 Pell's equation (Superpolynomial) 

 Formula evaluation (Polynomial) 

 Representation 

 

 
Quantum 

Algorithm 

Quantum 

Circuit 

Physical 

Realization 

(PMD) 

PMD: Physical Machine Description 

http://math.nist.gov/quantum/zoo/ 

http://math.nist.gov/quantum/zoo/
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4 

 Qubits 

 Data is carried by quantum bits or qubits  

 Physical objects are ions, photons, etc. 

 Quantum Gates 

 Single-qubit: H (Hadamard), X (NOT) 

 Two-qubit: CNOT (Controlled NOT), SWAP 

 Quantum Circuit 
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Quantum PMDs 
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 Move-based PMDs 
 Explicit move instruction 

 There are routing channels for qubit routing 

 Examples: Ion-Trap, Photonics, Neutral Atoms 

 SWAP-based PMDs 
 No move instruction 

 There are no routing channels 

 Qubit routing via SWAP gate insertion 

 Examples: Quantum Dot, Superconducting 

 

 Focus of this presentation is on SWAP-based PMDs 
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 Limited Interaction Distance 

 Adjacent qubits can be involved in a two-qubit gate 

 Nearest neighbor architectures 

 

 Route distant qubits to make them adjacent 

 Move-based: MOVE instruction 

 

 

 SWAP-based: insert SWAP gates 

 

2 3 1 

1 1 3 4 2 2 1 1 3 4 
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 SWAP insertion 

 Objective 

 Ensure that all two-qubit gates perform local operations (on adjacent 

qubits) 

 Side effects 

 More gates, and hence more area 

 Higher logic depth, and thus higher latency and higher error rate 

 Minimize the number of SWAP gates by placing frequently 

interacting qubits as close as possible on the fabric 

 This paper: MIP-based qubit placement 

 Future work: Force-directed qubit placement (a more scalable solution) 

MIP: Mixed Integer Programming 



Example on Quantum Dot 
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 Simple qubit placement: place qubits considering only 

their immediate interactions and ignoring their future 

interactions 
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Example on Quantum Dot (cont’d) 
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 Improved qubit placement: place qubits by 

considering their future interactions 
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No SWAP gate 



Qubit Placement 
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 Assign each qubit to a location on the 2D grid such that frequently 

interacting qubits are placed close to one another 

𝑥𝑖𝑤: assignment of 𝑞𝑖 to location 𝑤 

𝑥𝑗𝑣: assignment of 𝑞𝑗 to location 𝑣 

𝑚𝑖𝑗: number of 2-qubit gates working on 𝑞𝑖 and 𝑞𝑗 

𝑑𝑖𝑠𝑡𝑤𝑣: Manhattan distance between locations 𝑤 and 𝑣 

𝑐𝑖𝑤𝑗𝑣 = 𝑚𝑖𝑗 × 𝑑𝑖𝑠𝑡𝑤𝑣 

𝑞𝑖 
𝑤 

𝑣 
𝑞𝑗 

𝑑𝑖𝑠𝑡𝑤𝑣 

(1) 

Min       𝑐𝑖𝑤𝑗𝑣𝑥𝑖𝑤𝑥𝑗𝑣
𝑛
𝑣=1

𝑛
𝑗=1

𝑛
𝑤=1

𝑛
𝑖=1  

subject to  

 𝑥𝑖𝑤 = 1,   𝑖 = 1,… , 𝑛
𝑛
𝑤=1 , 

 𝑥𝑖𝑤 = 1,   𝑤 = 1,… , 𝑛
𝑛
𝑖=1 , 

𝑥𝑖𝑤 ∈ 0, 1 ,   𝑖, 𝑤 = 1,… , 𝑛. 
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 𝛼𝑖𝑤 =   𝑐𝑖𝑤𝑗𝑣,  𝑖, 𝑤 = 1,… , 𝑛
𝑛
𝑣=1

𝑛
𝑗=1  

 𝑧𝑖𝑤 = 𝑥𝑖𝑤   𝑐𝑖𝑤𝑗𝑣𝑥𝑗𝑣
𝑛
𝑣=1

𝑛
𝑗=1 ,  𝑖, 𝑤 = 1, … , 𝑛 

 

Min     𝑧𝑖𝑤
𝑛
𝑤=1

𝑛
𝑖=1  

subject to  

 𝑥𝑖𝑤 = 1,   𝑖 = 1,… , 𝑛
𝑛
𝑤=1 , 

 𝑥𝑖𝑤 = 1,   𝑤 = 1,… , 𝑛
𝑛
𝑖=1 , 

 𝛼𝑖𝑤𝑥𝑖𝑤 +   𝑐𝑖𝑤𝑗𝑣𝑥𝑗𝑣 − 𝑧𝑖𝑤 ≤ 𝛼𝑖𝑤,  𝑖, 𝑤 = 1, . . , 𝑛,
𝑛
𝑣=1

𝑛
𝑗=1  

𝑥𝑖𝑤 ∈ 0, 1 ,   𝑖, 𝑤 = 1,… , 𝑛, 

 𝑧𝑖𝑤 ≥ 0,  𝑖, 𝑤 = 1,… , 𝑛. 

𝑛2 binary variables (𝑥𝑖𝑤), 𝑛2 real variables (𝑧𝑖𝑤), and 𝑛2 + 2𝑛 constraints 

R. E. Burkard, E. ela, P. M. Pardalos, and L. S. Pitsoulis. The Quadratic Assignment Problem. Handbook of Combinatorial Optimization, Kluwer Academic 

Publishers, pp. 241-338, 1998. 

(2) 



MIP Optimization Framework 
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 GUROBI Optimizer 5.5 (http://www.gurobi.com) 

 Commercial solver with parallel algorithms for large-scale 
linear, quadratic, and mixed-integer programs (free for 
academic use) 

 Uses linear-programming relaxation techniques along with 
other heuristics in order to quickly solve large-scale MIP 
problems 

 

 Qubit placement (the MIP formulation) does not 
guarantee that all two-qubit gates become localized; 
Instead, it ensures the placement of qubits such that the 
frequently interact qubits are as close as possible to one 
another 
 SWAP insertion 

http://www.gurobi.com/
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Solution Improvement (1) 
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 Two qubits may interact with one another at different times 

 Not satisfactorily captured by a global qubit placer 

 Solution: Partition the circuit into 𝑘 sub-circuits (𝑆1 , ⋯ , 𝑆𝑘) 

(1) The placement tool finds initial qubit placements (𝑃𝑗
𝑖). 

(2) A SWAP insertion block generates final qubit placements (𝑃𝑗
𝑓
) by inserting 

intra-set SWAP gates. 

(3) A swapping network inserts inter-set SWAP gates to change the final 

placement of 𝑆𝑗 to the initial placement of 𝑆𝑗 + 1 as generated by the qubit 

placer 
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 In the previous solution, 𝑃𝑗
𝑓
is obtained without 

considering 𝑃𝑗+1
𝑖 , for 𝑗 ≥ 2 

 Large swapping networks 

 Objective function of (1) only minimizes the intra-set 
communication distances 

 Solution: Add a new term to the objective function in order 
to capture inter-set communication distances 
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𝑞𝑖,𝑠: qubit 𝑖 in sub-circuit 𝑠 

𝑥𝑖𝑤
𝑠 : assignment of 𝑞𝑖,𝑠 to location 𝑤 

𝑥𝑗𝑣
𝑠 : assignment of 𝑞𝑗,𝑠 to location 𝑣 

𝑚𝑖𝑗
𝑠 : number of 2-qubit gates working on 𝑞𝑖,𝑠 and 𝑞𝑗,𝑠 
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Min       𝑚𝑖𝑗
𝑠 𝑑𝑖𝑠𝑡𝑤𝑣𝑥𝑖𝑤

𝑠 𝑥𝑗𝑣
𝑠𝑛

𝑣=1
𝑛
𝑗=1

𝑛
𝑤=1

𝑛
𝑖=1

𝑘
𝑠=1 +

    𝑑𝑖𝑠𝑡𝑤𝑣𝑥𝑖𝑤
𝑠 𝑥𝑗𝑣

𝑠+1𝑛
𝑣=1

𝑛
𝑤=1

𝑛
𝑖=1

𝑘
𝑠=1  

subject to  

 𝑥𝑖𝑤 = 1,   𝑖 = 1,… , 𝑛
𝑛
𝑤=1 , 

 𝑥𝑖𝑤 = 1,   𝑤 = 1,… , 𝑛
𝑛
𝑖=1 , 

𝑥𝑖𝑤 ∈ 0, 1 ,   𝑖, 𝑤 = 1,… , 𝑛. 

(3) 

Intra-set communication 

distance 

Inter-set communication 

distance 



Force-directed Qubit Placement 
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 Attractive forces 

 A force proportional to 𝑚𝑖𝑗
𝑠  between 𝑞𝑖,𝑠 and 𝑞𝑗,𝑠. 

 A (unit) force between between 𝑞𝑖,𝑠 and 𝑞𝑖,𝑠+1. 

 Can be solved by quadratic programming 



Results (1) 

18 

  # of qubits # of gates Grid Size #SWAPs #SWAPs Imp. (%)  Ref. 

 3_17  3 13 2x2 6 4 -50 [1] 

 4_49  4 30 2x2 13 12 -8 [1] 

 4gt10 5 36 3x2 16 20 20 [1] 

 4gt11  5 7 2x3 2 1 -100 [1] 

 4gt12 5 52 3x2 19 35 46 [1] 

 4gt13 5 16 3x3 2 6 67 [1] 

 4gt4 5 43 2x3 17 34 50 [1] 

 4gt5  5 22 3x3 8 12 33 [1] 

 4mod5 5 24 2x3 11 9 -22 [1] 

 4mod7   5 40 3x3 13 21 38 [1] 

 aj-e11 4 59 2x3 24 36 33 [1] 

 alu 5 31 2x3 10 18 44 [1] 

 decod24 4 9 2x2 3 3 0 [1] 

 ham7 7 87 3x3 48 68 29 [1] 

 hwb4 4 23 3x3 9 10 10 [1] 

 hwb5 5 106 3x2 45 63 29 [1] 

 hwb6 6 146 2x3 79 118 33 [1] 

 hwb7 7 2659 3x3 1688 2228 24 [1] 

 hwb8 8 16608 3x3 11027 14361 23 [1] 

 hwb9 9 20405 4x3 15022 21166 29 [1] 

 mod5adder 6 81 3x2 41 51 20 [1] 

 mod8-10 5 108 3x3 45 72 38 [1] 

 rd32 4 8 2x3 2 2 0 [1] 

 rd53 7 78 5x2 39 66 41 [1] 

 rd73 10 76 4x4 37 56 34 [1] 

Our Method Best 1D 



Results (2) 
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  # of qubits # of gates Grid Size #SWAPs #SWAPs Imp. (%)  Ref. 

 sym9 10 4452 4x4 2363 3415 31 [1] 

 sys6 10 62 4x4 31 59 47 [1] 

 urf1 9 57770 3x3 38555 44072 13 [1] 

 urf2 8 25150 2x4 16822 17670 5 [1] 

 urf5 9 51380 3x3 34406 39309 12 [1] 

QFT5 5 10 3x2 5 6 17 [1] 

QFT6 6 15 2x3 6 12 50 [1] 

QFT7 7 21 5x2 18 26 31 [1] 

QFT8 8 28 4x2 18 33 45 [1] 

QFT9 9 36 3x3 34 54 37 [1] 

QFT10 10 45 5x3 53 70 24 [1] 

 cnt3-5 16 125 3x6 69 127 46 [2] 

 cycle10_2 12 1212 3x4 839 2304 64 [2] 

 ham15 15 458 5x3 328 715 54 [2] 

 plus127mod8192 13 65455 5x4 53598 151794 65 [2] 

 plus63mod4096 12 29019 5x3 22118 61556 64 [2] 

 plus63mod8192 13 37101 5x3 29835 82492 64 [2] 

 rd84 15 112 5x3 54 148 64 [2] 

 urf3 10 132340 4x3 94017 154672 39 [2] 

 urf6 15 53700 5x3 43909 88900 51 [2] 

Shor3 10 2076 4x3 1710 1816 6 [3] 

Shor4 12 5002 3x6 4264 4339 4 [3] 

Shor5 14 10265 5x4 8456 10760 21 [3] 

Shor6 16 18885 4x6 20386 20778 2 [3] 

On average 27 

Our Method Best 1D 
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 Qubit placement methods for 2D quantum 

architectures 

 Directly applicable to Quantum Dot PMD 

 27% improvement over best 1D results 

 

 Future work: force-directed qubit placement 

 Better results by considering both intra- and inter-set SWAP 

gates in the optimization problem 
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