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STT-RAM Basics 

• Magnetic Tunnel Junction (MTJ) 

• Two ferromagnetic layers separated by a barrier 
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STT-RAM Basics (cont.) 

• Advantages 

• Non-volatile, near zero leakage energy 

• As fast as SRAM (read) 

• As dense as DRAM 

• Multi-level cell capability (stacking MTJs) 

• CMOS-compatible 

• Universal memory 

4 



Motivations of Hybrid Cache 

• Expensive write operation of STT-RAM 

• High latency (10ns+) 

• High energy 

• Compensated by relaxed non-volatility [Smullen et al. 11] 

• Refresh 

• Endurance 

• Intense writes in L1 

• bodytrack: L1(s) / L2 = ~29! 

• Additional synchronous operations under multi-core 

environment 
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Proposed Hybrid Cache Hierarchy 
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Cache Block Management 

• Naïve solution 

• Based on temporal locality 

 

 

 

 

 

 

• Simple but not good enough 

• > 3% IPC degradation 
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The MESI Coherent Protocol 

• Developed by University of Illinois 

• Illinois MESI 

• For each cache block 

• M (modified) state – data dirty, exclusive copy 

• E (exclusive) state – data clean, exclusive copy 

• S (shared) state – data clean, multiple copies 

• I (invalid) state 

• Common event bus 

• Local (processor) read/write 

• Remote (snoop / bus) read/write 
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Cache Block Management (cont.) 
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• Immediate transfer policy (IT) 

• Place dirty data (M state) block in SRAM 

• Place clean data (E/S state) block in STT-RAM 

• Transfer cache block when coherent state changes 

• DO NOT need extra information (built-in by MESI) 



Immediate Transfer Policy (IT) 
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Cache Block Management (cont.) 
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• Delayed transfer policy (DT) 

• IT could be too aggressive 

• Coherent state “ping-pong” between M and S 

• Relax state restriction 

• Consider request history in prediction 

• Extra information required 

 

 

 

 

 



Delayed Transfer Policy (DT) 
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Evaluation 

• PARSEC on MARSSx86 [Patel et al.11] 

• IPC (Instruction Per Cycle) 

• NVSim [Dong et al. 12] 

• Latency, area and energy numbers (32nm) 

• Configuration 

• Quadcore machine with two-level cache hierarchy  

• Relaxed STT-RAM’s  non-volatility with a 26.5µs 

retention period [Sun et al. 11] 

• Various cache size combinations within the 

baseline area budget (64KB SRAM) 
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Normalized IPC (IT policy) 
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Normalized Energy (IT policy) 
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Comparison of Transfer Policies 
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STT-RAM Endurance 

• Lifespan programming cycles 

• SRAM and DRAM: 10^16 

• STT-RAM prediction [Tabrizi 07] : 10^15 

• STT-RAM reported [Diao et al. 07] : 10^13 

• SLC NAND flash: 10^5 

• Writes in L1 cache 

• High intensity 

• Non-even distributed 

• bodytrack: ~35% writes on one cache partition 

• facesim: ~50% writes on the same cache partition, ~15% 

on the same block! 
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STT-RAM Endurance (cont.) 
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• facesim 

Perfect 

distributed 

Worst 

Partition 

Worst 

Block 

Baseline 

SRAM 
1,300+ years 300+ years < 360 hrs 

Baseline 

STT-RAM 
1.3 years 0.3 years < 22 mins 

Hybrid Naïve 3.5 years 1.0 year 0.9 hr 

Hybrid IT 41.2 years 6.9 years 51.6 hrs 

Hybrid DT 32.9 years 7.0 years 54.3 hrs 

150x lifespan increases for the worst block! 
 



Conclusion 

• Deploy STT-RAM as L1 cache 

• Expensive write (latency, energy and endurance) 

• Architecture solution: hybrid cache 

• “big.LITTLE” model 

• MESI-based Hybrid L1 Cache Architecture 

• Small SRAM partition + large STT-RAM partition  

• Using built-in information from coherent protocol 

• Performance maintained with less energy, and 

extended lifespan 
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