Allocation of FPGA DSP-Macros in
Multi-Process High-Level Synthesis
Systems

Benjamin Carrion Schafer
The Hong Kong Polytechnic University

Department of Electronic and Information Engineering
b.carrionschafer@polyu.edu.hk

Design Automation and
Reconfigurable Computing

RC

, @DARC_lab

THE HONG KONG
POLYTECHNIC UNIVERSITY
T T A5

&

Outline

* High Level Synthesis — Resource Sharing Overview
 Motivational Example

— ASIC vs. FPGA resource sharing/ functional unit DSE
* FPGA DSP-macros

* Motivation for effective methods to allocate DSP macros across
multiple-processes DSP-macro allocation method: Allocation of
DSP-macros for Multiple Processes (ADSP_MULTP)

— Step 1 :Functional Unit Design Space Exploration
— Step 2 : DSP-macro sensitivity computation
— Step 3 : Sorting based on sensitivity
— Step 4 : Allocate DSP-macros
* ADSP_MULTP variations
* Experimental Setup and Results
* Conclusions

High Level Synthesis 101

4 N 3

4o/ Allocation Const
Delay add32s:1

mul32s:1
"~

Scheduling

Clock step1 1/freq

Clock step2

Clock step3

HLS Resource Sharing

/char A,B,C,D;
char E,F;
main(){

char X;

X=A+B;
E=X*D;
F=(B+C)*X;

\

N

J

@

3 cycles
Delay:1T

ASIC Resource Sharing/FU DSE

* Resource Sharing

— Assingle functional unit (FU) is re-used among different computational
operations in the behavioral description

— Can lead to smaller designs
* O-TAP FIR filter example targeting ASIC Nangate 45nm@100MHz

: : for(i=0;i<9;i++)
FSM \ Datapath sum += ary[i] * coeff[i] ;

\

]
T

'
o
<

i

L

cin B

FPGA Resource Sharing/FU DSE

* Same FIR filter targeting a Xilinx Virtex6 FPGA

* In default mode Area’l* when #FU{, because the FUs (MAC) are now mapped to the
FPGAs DSP macros

e DSP macros are free in terms of area, while Muxes are not

for(i=0;i<9;i++)
sum += ary[i] * coeff[i] ;

— T

W AREA ~| [Absohte [AREA =] I Absolute
DSP Macros el e LUTs
//
4 e
~
-~
P
>
1 e
e

_ /,/ g

B //
s02 >

e
p
4 e
-
7
| Vad
v <

] A Lo ~

| ',// L“‘-& —
236

3809
" [—, =

2022

DSP Macros

Observations when targeting FPGAs

* Always use FPGAs DSP-macros

 Reduce the amount for resource sharing as much
as possible

BUT

* FPGAs have increased to a point that entire systems
can now be implemented on a single device

* HLS is a single process synthesis = One process is
synthesized and optimized at a time

=>» An Effective method to allocate DSP macros across
multiple-processes is needed which minimizes the
total design Area

FPGAs DSP-macros

* High-end FPGAs have large number of DSP-macros, but cannot be used for consumer
products

 Consumer products a very price sensitive
* DSP applications extremely DSP-macro intensive
e FIR filter consumes 9 DSP48E1s macros and 24 Slice LUTs when fully parallelized

DSP-macros DSP-macros Price ()
(family
dependent)
Xilinx Virtex7 (high-end) 1,260-3,600 25x18 multiplier, 48-bit accumulator, and X,000 USD
pre-adder
Xilinx Artix7 (low-end) 60-740 25x18 multiplier, 48-bit accumulator, and X USD
pre-adder
Altera Stratix5 (high-end) 512-3,926 18x18multiplier — variable precision X,000 USD

multipliers, 64-bit
accumulator

Altera Cyclone5 (60-740) 60-740 18x18multiplier— variable precision X USD
multipliers, 64-bit
accumulator

Proposed Method : Allocation of DSP-macros for

Multiple Processes (ADSP_MULTP)

* 2 main steps sub-divided into 4 smaller
— Perform FU Design Space Exploration (DSE) for each process

— Decided how to best allocated the available DSP-macros given a set of latency

constraints for each process
c/sc, c/sc, C/SC,

Voo y

Functional Unit (FU)
Design Space Exploration (DSE)

\ V \

LUTs

o~
[4
4
-@ -

Qooo/'/

°
- -0
DSPs

Latency

FPGA (Max
DSPs) ADSP_MULTP

Latencies

Area Area

Latency Latency Latency

Step 1: FU Design Space Exploration

* Perform FU Design Space Exploration (DSE) for each process by:

1. Synthesize behavioral description in default mode to maximize parallelism and
extract FU constraint file with max FUs needed

2. Reducing the number of FUs by 20% in constraint FILE
3. Map the FUs to DSP-macros and LUTs

Area Area
DSP-macros only <— LUTs only
¢ DSPs + LUTSs
Max FUs Min FUs °
., o--0--® ¢ ___e--e -0
//.’ ® ,/. \
P P DSPs
Latency Latency
(@) (b)
Area Area

) DSPs + LUTs

\\ '\
o . % LUTs o ..
o VW~V R

o [J - () Y . S -
/.’__.._——'—-'. ([’—_‘___.___.

o, N ° @

4

DSP g
{ S ®
Latency L, L, Latency

10
() (d)

Mapping MAC to DSP-macros or LUTs

 HLS tools do not allow fine grain controllability of where

to map single operations. E.g.
for(i=0;i<9;i++)
sum += aryJi] * coeff[i] ;

* How to map X MAC to DSP-macros and 9-X to LUTs?
=>»RTL generated by HLS is parsed by the FU explorer and
automatically edited adding FPGA vendor specific

synthesis directive. E.g. Xilinx: o LuTs ony
attribute use dsp48 : string; o DSPs + LUTs
attribute use dsp48 of mull6s9ot : signal is "no"; : Ca--a--8
attribute use dsp48 of mull6s8ot : signal is "yes"; :f"f ™ DSPs

Latency

=>» Need to make sure that timing is still met after logic synthesis ! "

Motivation for Full FU DSE

 Most designs returned by the DSE are not
Pareto-optimal, although parabolic behavior in
some cases. BUT:

e Often the design latency is a global constraint
(either single or range)

* This constraint can vary during different project
stages e.g. when the process is integrated into
the system or when it is re-used in later
projects.

=>» Full exploration results are stored and the most
efficient implementation is selected when the
latency or latency interval constraint is
specified.

=» Only those designs within the specified latency
interval are considered by our method

Area

Area

o _
® -
] ® ® "'.--.
®]
® .#_.___._._..
o
/
@
|
L+ Latency
. eoN
® O.__
. . . T o=
o © © o -9
POl S
o,
!
®
L4 L, Latency

12

Step 2: DSP-macro Sensitivity Calculation

* Use DSP-macro Sensitivity S as priority criteria to map MAC
operations to DSP-macro or LUTs

* If latency range is given use the Design Family (DF) with design
with smallest area

 Siscomputed for the given latency
A Area= Area max - Area min;
A DSP= DSPs max - DSPs min;

S=A Area/A DSP: ProcessN (Py)

Area Area

@0 06 0 0
~ Vd
\ /7
Qo000

L, Latency # DSPs

13

Step 3: Sensitivity Based Process Sorting

* Sort all the processes in the given system
using S as sorting criteria

Sp1> Sp2 > Spy

Process1 (P,) Process2 (P,)

Area
Area Area Area

. 0o 0 0 0
- s
N\ rd
WX)

L1 L, Latency

Latency

14

Step 4: DSP-macro allocations

* Greedy DSP-macro allocation process

* Allocated DSP-macros to process P; with highest
Sensitivity S; until no more DSP-macros are needed OR

the DSP-macro budget is exhausted

With S,, > Sp, > Sp,
Process1 (P,) Process2 (P,) ProcessN (P,)
Area Area Area
o ., ® e O
o AL 9 -] o
® P : "".-- @ P ® o - o : ® "".-..
o © _ ® o ®
_e-0-—-® ® | 9 e © LV a--@
@ ,-".- ¢ ® 2 1-® d ® ,,."'"-. o
¢ | ° . |

L1 Latency L, L, Latency L1 Latency

15

ADSP MULTP Variation

Method Weakness

Area Area

* Assumes that the effect of mapping a
MAC onto a DSP-macro is linear e Sl
within the same design family. P SR oo
* Size of mapped muxes grows in a *

L, Latency # DSPs

none-linear way and hence the
sensitivity S
* To better understand the impact of the non-linearity in
the sensitivity a variation of our proposed method was
implemented = ADSP_MULTP fast brute.
* Exact same steps as the original method except step4
=>» performs a brute force search trying all possible DSP-
macro assignments within the selected DFs only

16

Experimental Setup

* 6 DSP intensive applications chose and grouped together

* Generate 8 complex benchmarks
| Bench || s1 | 52 | =3 | =4 | 55 | s6 | 57 | =8 |

FIR 1 1 1 1 1 2 2 2
CVIDIQ 1 1 1 1 2 2 2
FFT 1 1 1 1 2 2 2
Interp 1 1 1 1 1 2 2 2
Decim 1 1 1 2 2
Forces 1 1 2

Max mults. || 68 | 103 | 89 | 116 | 118 | 136 | 206 | 236 |

 The HLS tool used is CyberWorkBench v.5.2 from NEC

* The number of LUTs and registers reported are extracted
from Xilinx’s ISE 14.2

* FPGA is a Xilinx Virtex 6 VCX130T
e Target HLS frequency is 75MHz

17

Experimental Results

e Brute force vs. ADSP_MULTP fast_brute vs. ADSP_MULTP

 DSP-macro budget is set to 75% of the total number of multiplications that each complex
benchmark would need in order to maximize its parallelism

* Brute force running up to 4 days

* Random latency range that covers less than 1/4 of the total latency range was chosen for

each of the processes
EXPERIMENTAL RESULTS] (WITHOUT LATENCY CONSTRAINT) (A)

| || Brute Force(1) || ADSPMULTP fast_brute(2) || ADSPMULTP(3) | A LUT Slices |
#DSPs Runls] LUTs Run|s] LUTs Run|s] LUTSs ALUTs1-2 | ALUTs 1-3 | A LUTs 2-3
S1 51 3 8,610 <1 8,610 <1 10,190 0.00 15.51 15.51
52 7T 564 12,137 <1 14,124 <1 15,365 14.07 21.01 8.08
S3 67 302 9,901 <1 10,192 <1 10,192 2.86 2.86 0.00
S4 87 10,810 10,810 <1 12,598 <1 12,508 14.19 14.19 0.00
55 29 27,324 13,047 2 14,283 <1 14,651 8.65 10.95 2.51
S6 102 NA NA 13 19,644 <1 21,010 NA NA 6.50
57 155 NA NA 186 21,883 <1 23,347 NA NA 6.27
S8 1177 NA NA 139,307 28,566 <1 31,127 NA NA B.23
&oe [| || — [% [nw]
EXPERIMENTAL RESULTS2 (\-\'[T]] LATENCY CEUNSTH:\[NT)[B)
| [| Brute Force(1) || ADSPMULTP fast_brute(2) [| ADSPMULTP(3) A LUT Slices |
#D5Ps Runl[s] LUTs Runs] LUTs Run[s] LUTs ALUTs1-2 | ALUTs 1-3 | A LUTs 2-3
51 51 1 8,776 <1 8, 7T <1 8,776 0.00 0.00 0.00
S2 77 20 12,598 <1 12,598 <1 12,731 0.00 1.04 1.04
=3 67 11 10,268 <1 10,268 <1 10,268 0.00 0.00 0.00
S4 87 28 11,278 <1 11,278 <1 12,071 0.00 6.57 6.57
S5 29 824 13,515 <1 13,515 <1 13,515 0.00 0.00 0.00
S6 102 NA NA 1 17,552 <1 18,013 NA NA 2.56
57 155 NA NA 3 21,374 <1 22,781 NA NA 6.18
S8 177 NA NA 12 27,030 <1 27800 NA NA 2.77
[Ave [| [| [| [0.00 | 1.52 2.39 |

Summary and Conclusions

 Motivated the need to have effective methods to
assign DSP-macros to multi-process systems

* Presented a method to allocate FPGA’s DSP-macros
efficiently across multiple processes synthesized
using HLS

* Introduced the concept of sensitivity S to allocate
DSP-macros across the different processes

 Demonstrated that our method achieves very good
results compared to the brute force optimal
solutions extremely quick

19

