

A Volume Diagnosis Method for Identifying Systematic Faults in Lower-yield Wafer Occurring during Mass Production

<u>Tsutomu Ishida¹</u>, Izumi Nitta¹, Koji Banno²,

- Yuzi Kanazawa¹
- ¹ FUJITSU LABORATORIES LTD.

² FUJITSU SEMICONDUCTOR LTD.

Outline

- Lower-yield wafer
- Proposed method
 - Likelihood selection
- Experimental results
- Summary & future work

Outline

- Lower-yield wafer
- Proposed method
- Experimental results
- Summary & future work

Lower-yield Wafer Problem

- Even after yield is ramped up to a mature level, it may still vary as lower-yield (excursion) wafers occur.
 - In worse cases, we have to stop fabrication until the root causes are detected.
 - With increasing IC fabrication complexity, analyzing wafer and process histories becomes less effective.

- To identify the root cause using one lower-yield wafer for yield improvement.
 - In mature level, one lower-yield wafer sometimes occurs singly in a lot.
 - For example, due to failure of single-wafer processing equipment.

Process of Identifying Root Cause

Why Conventional Volume Diagnosis* Doesn't Work for One Lower-yield Wafer?

Not enough input data to analyze statistically.

*[C. Hora, *et al*., ITC2002] [H. Tang, *et al*., ETS2007]

Why Conventional Volume Diagnosis* Doesn't Work for One Lower-yield Wafer?

Not enough input data to analyze statistically.

*[C. Hora, *et al*., ITC2002] [H. Tang, *et al*., ETS2007]

Why Pseudo-fault Nets Are Reported As Fault Candidate Nets?

- Logic diagnosis cannot identify true fault nets definitely due to logic equivalency and lack of layout information.
 - But each fault candidate net can be ranked (e.g. score).

Previous Work How to Avoid the Effect of Pseudo-fault Nets?

W. C. Tam, *et al.*, ITC 2010

 They used the failing ICs in which there is only one fault candidate net in the experiment.

Outline

- Proposed method
 - Likelihood selection
- Experimental results
- Summary & future work

Our Main Contribution

- We proposed a new volume diagnosis method:
 - For each failing IC, a true fault net can be selected by a key technique (we call it "likelihood selection").
 - One lower-yield wafer (e.g. <100 failing ICs) is enough for identifying critical layout feature.

Key Idea

 To find fault candidate nets of which failure model can predict whether each net is assumed as fault or not correctly.

Fault candidate net list

Key Idea

 To find fault candidate nets of which failure model can predict whether each net is assumed as fault or not correctly.

Fault candidate net list

#mismatch=0 (mode $|_4m_2$)

Details of Failure Model

Failure model is a linear model.

A Combinatorial Optimization Problem

- To find the set of fault candidate nets of which failure model's R² comes close to 1.
 - Combinatorial optimization is used to implement the key idea.

Likelihood Selection: A Combinatorial Optimization Process

- Hill climbing can obtain the failure model which identifies the critical layout feature correctly.
 - Because initial fault nets which are pretty close to true fault nets are extracted using indices (e.g. score) with logic diag.
 - We call this comb. opt. process "likelihood selection."

Overall Flow

Outline

- Proposed method
- Experimental results
- Summary & future work

Experiments & Results

Practical IC product B

- Process: 65nm CMOS
- Gates: about 10 million
- Layers: L1 L6

Dataset

Identified using equipment history

Dataset	#Failing ICs	Damaged layer	
B-lot1-wf2	60	L4 layer	
B-lot2-wf2	73	L2 layer	

Each dataset consists of failing ICs which are successfully diagnosed by in-house logic diag. tool in one lower-yield wafer.

21 datasets are collected.

- Capability of the proposed method
 - For 19 datasets, the proposed method could identify the damaged layer correctly.

Experiments & Results

Practical IC product A

- Process: 28nm CMOS
- Gates: about 60 million
- Layers: L1 L9

Dataset

Identified by PFA

Dataset	#Failing ICs	Critical layout feature
I (A-lot1-wf1)	35	L7dw
II (new)	29	L7via

- Capability of the proposed method
 - For both datasets, the proposed method could identify its own critical layout feature correctly.

Details of Experimental Results with Product A

I. 35 failing ICs with Lot-1

L7 layer is damaged.

II. 29 failing ICs with Lot-2

A wire connected to a via is opened on L7 layer.

Effectiveness of Likelihood Selection

- A typical example (a dataset of product B) which shows the effectiveness of likelihood selection.
 - In likelihood selection, the initial fault net is replaced in 28 of 66 failing ICs.

Summary and Future Work

- We presented a volume diagnosis method for identifying critical layout feature with systematic faults in one lower-yield wafer.
 - Likelihood selection:
 - A kind of combinatorial optimization process.
 - A technique which can select true fault nets from among fault candidate nets including pseudo-fault nets.
 - Net grouping, ε-SVR (Details are described in our paper)

Future work

- To rank fault location candidates in failing ICs using the fault nets and the critical layout feature obtained by the proposed method.
- To evaluate existing DFM rules based on the dominant root causes with lower-yield wafers.

Thank you!