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Brains by the Numbers 
Species Neurons Synapses 
Nematode 302 103 

 
Fruit Fly 100,000 107 

 
Honeybee 960,000 109 

 
 

Mouse 75,000,000 1011 

 
Cat 1,000,000,000 1013 

 

 
Human 85,000,000,000 1015 
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Source – http://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons 



Brain Computations 
• Massive parallelism (1011 neurons) 
• Massive connectivity (1015 synapses) 
• Excellent power-efficiency  

•   ~ 20 W for 1016 flops 

•  Low-performance components (~100 Hz) 
•  Low-speed comm. (~meters/sec) 
•  Low-precision synaptic connections 
• Probabilistic responses and fault-tolerant  
• Autonomous learning 
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Hierarchy of Brain Model Abstractions 

Theoretical 
(e.g. ICA, Bayesian) 

Generic algorithm 
(e.g. Numenta) 

Application specific /  
system level 

Neural Circuit level 

Biophysical level 
(e.g. Blue Brain) 

Application specific /  
system level 

Neural Circuit level 

4 

High 

Low High 

Low 

Abstraction, 
Simulation  
Speed, • 	  Rate	  or	  Spikes	  

• 	  micro-‐columns	  
• 	  hyper-‐columns	  

• 	  convolu6on	  
• 	  normaliza6on	  
• 	  cluster	  etc	  Accuracy 



Outline 

• What are SNNs? 

• Neuromorphic Hardware and Simulation Tools 

• CARLSim SNN Simulator and Applications 

• Parameter Tuning of Large-Scale SNNs 

January 24, 2014 Parameter Tuning for Neuromorphic Applications 5 



Spiking Neural Networks (SNNs) 
•  What are SNNs? 

•  Neural Networks that model neuronal/synaptic temporal dynamics 
•  Spike only when the membrane voltage exceeds a threshold 

•  Why use SNNs? 
•  Speed of processing hypothesis 

•  processing with a wave of spikes 

•  Spikes are rare: average brain activity < 1Hz 
•  “rates” are not energy efficient 

•  SNNs use temporal coding but can still use rate coding 

•  Event-driven nature of SNNs fits well with neuromorphic hardware 
•  Use “Address Event Representation” (AER) to minimize communication 

•  SNNs model important unsupervised learning algorithm: Spike Timing-Dependent 
Plasticity (STDP) 
•  Precise spike firing has been found at almost all levels of the mammalian visual pathway 
•  The exact timing of spike changes plasticity 
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Modeling Components at the Neural Circuit Level 
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Many Parameters! 



Outline 

• What are SNNs? 

• Neuromorphic Hardware and Simulation Tools 

• CARLSim SNN Simulator and Applications 

• Parameter Tuning of Large-Scale SNNs 
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Neuromorphic Hardware Devices 
Hardware Project: 
Hardware Group 

Hardware Description Neuron 
Models 

Synaptic 
Plasticity 

Max 
Neurons 

Max 
Synapses 

SpiNNaker: 
Industry and UK 

universities 

- Completely digital  
- Consists of array of nodes  
- Each node has 18 ARM9 cores 
- Final goal: 1,036,800 cores 

Spiking: 
Izhikevich 
and non-
spiking 

 
Yes: 

STDP 

1,000 
neurons per 
ARM9 core* 

10k synapses 
per ARM9 

core* 

 
Neurogrid: 

Stanford University 

- Analog/digital hybrid 
- Full board has 16 neurochips 
- Operates on only 5 W 

Spiking: Two-
compartment 

neurons 

 
No 

65,536 
neurons per 
neurochip 

375M 
synapses per 

neurochip 

True North Cog. 
Architecture: 

IBM SyNAPSE 
Team 

- Completely digital  
- Consists of hierarchical design 
- Neurosynaptic core is basic 
  building block 

Spiking: many 
behaviors 

including LIF 

 
No 

256 neurons 
per neuro-
synaptic 

core 

256K binary 
synapses per 

neuro-
synaptic core 

HRL neural chip: 
HRL Labs, LLC 
SyNAPSE Team 

- Analog/digital hybrid 
- Synaptic weights stored in  
  memristors 

 
Spiking: 

Izhikevich 

 
Yes: 

STDP 

 
576 neurons 

per chip 

70k virtual 
synapses per 

chip 

 
HiCANN: 

BrainScaleS Team 

- Analog/digital hybrid 
- Each wafer has 384 chips 
- Neurons are analog 
- Synapses are digital 

 
Spiking: AdExp 

and I&F 

 
Yes: 

STDP 

 
512 neurons 

per chip* 

 
16k synapses 

per chip* 
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* Indicates the max. number of neurons are synapses are not independent 



Neuromorphic Software Tools: SNN Simulators 
Software 
Project 

 
Features 

Parallelized 
Implementations 

 

Implementation 
Language 

Parameter 
Tuning 
Tools 

 
 

NENGO 

- Uses neural engineering framework (NEF) 
- Set weights to perform specific computations 
- Uses both rate-based and spiking neurons 
- Uses neural plasticity rules (STDP) as well 

 
 

None 

 
- Core: Java 
- Python scripting 

 
 

NEF 

 
 

NEST 

- Mature codebase for multiple platforms 
- Includes many neuron and plasticity models 
- Built-in simulation language interpreter 
- Module for creating complex networks 

 
Parallelized MPI 

CPU 
implementation 

 
- Core: C++ 
- Interface: Python 
- PyNN support 

 
 

None 

 
 

Brian 

- Multiple integration methods 
- Multiple neuron and plasticity models 
-  Uses Python plotting packages 
-  Good documentation 

Parallelized CPU 
support 

Parallelized GPU 
support only for 

tuning component 

 
- Core: Python 
- PyNN support 

Support for 
tuning 
neuron 
models 

 
 

CARLsim 

- Fast and efficient CUDA GPU implementation 
- Support for key ion channels 
- GPU parallelized general tuning framework 
- Includes highly optimized CUDA vision 
frontend 

 
Parallelized 
CUDA GPU 

implementation 

- Core: C++ and  
  CUDA 
- Syntax similar to  
   PyNN 

General 
tuning 

framework 
using EAs 
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* Indicates the max. number of neurons are synapses are not independent 



Outline 

• What are SNNs? 

• Neuromorphic Hardware and Simulation Tools 

• CARLSim SNN Simulator and Applications 

• Parameter Tuning of Large-Scale SNNs 
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Neuromorphic Software Tools: SNN Simulators 
Software 
Project 

 
Features 

Parallelized 
Implementations 

 

Implementation 
Language 

Parameter 
Tuning 
Tools 

 
 

NENGO 

- Uses neural engineering framework (NEF) 
- Set weights to perform specific computations 
- Uses both rate-based and spiking neurons 
- Uses neural plasticity rules (STDP) as well 

 
 

None 

 
- Core: Java 
- Python scripting 

 
 

NEF 

 
 

NEST 

- Mature codebase for multiple platforms 
- Includes many neuron and plasticity models 
- Built-in simulation language interpreter 
- Module for creating complex networks 

 
Parallelized MPI 

CPU 
implementation 

 
- Core: C++ 
- Interface: Python 
- PyNN support 

 
 

None 

 
 

Brian 

- Multiple integration methods 
- Multiple neuron and plasticity models 
-  Uses Python plotting packages 
-  Good documentation 

Parallelized CPU 
support 

Parallelized GPU 
support only for 

tuning component 

 
- Core: Python 
- PyNN support 

Support for 
tuning 
neuron 
models 

 
 

CARLsim 

- Fast and efficient CUDA GPU impl. 
- Support for key ion channels 
- GPU parallelized general tuning 
framework 
- Includes highly optimized CUDA vision 
frontend 

 
Parallelized 
CUDA GPU 

implementation 

- Core: C++ and  
  CUDA 
- Syntax similar 
to  
   PyNN 

General 
tuning 

framework 
using EAs 
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Code available at: http://www.socsci.uci.edu/~jkrichma/CARLsim 

CARLsim 



CARLsim Applications 
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• Used to create large-scale simulations of cognitive processes 
•  10k – 100K neurons  with millions of synapses 

• Sample Applications 
•  Visual Processing 

•   Large-scale model of cortical areas V1, V4, and area MT [Richert et al.  2011] 

•  Neuromodulation 
•  Top-down and bottom-up attention [Avery et al. 2013a] 
•  Working memory and behavior [Avery et al. 2013b] 

•  Object Categorization 
•  Classifying handwritten digits [Beyeler et al. 2013] 

•  Neural Plasticity 
•  Biologically plausible STDP and Homeostatis [Carlson et al. 2013] 



CARLsim Example: MNIST Classification 
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•  MNIST database of handwritten digits 
•  60,000 training / 10,000 test patterns 

•  Neurofidelity 
•  Network: spiking neurons, ion channels 
•  Training: Calcium-based learning rule (STDP-like) 
•  Classification: decision-making (drift-diffusion / race 

model) 

•  Accuracy 
•  92 % correct classifications 
•  Biologically plausible reaction times 

•  Efficiency 
•  71,026 neurons, ~133 million synapses 
•  Real-time processing on a single NVIDIA Tesla M2090  

•  Scalability 
•  Modular approach 
•  Extend to more general neuromorphic implementation 



CARLsim Example: Vision Processing System 
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•  Implemented motion selectivity in spiking 
model of Area MT 

•  32x32 Resolution, 138,240 neurons; ~30 million 
synapses (shown on the left) 
•  Running in real-time on single GPU card. 

•  Higher resolution, ~550K neurons; ~120M 
synapses (shown below) 



Outline 

• What are SNNs? 

• Neuromorphic Hardware and Simulation Tools 

• CARLSim SNN Simulator and Applications 

• Parameter Tuning of Large-Scale SNNs 
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Parameter Tuning of Neurobiologically 
Inspired Networks: Time Consuming! 

•  Example 1*: Tuning a small, lobster pyloric circuit: 
•  Tuned 3-neuron, 5 synapse circuit 
•  Database of 20M configurations was generated, with only 20% functional 

•  Example 2+: Tuning small SNN: 
•  5 parameters with 10 values, each needs 105 simulations 
•  Simulation Time: ~15 days for 1K network with 5 parameters 

•  Lesson:  
•  Even for small networks, search space is extremely large with many solutions! 

•  Biology provides some constraints, BUT 
•   designer must choose many parameter values manually to achieve appropriate 

neuronal dynamics. 

•  Our Solution: Automated Parameter Tuning using GPUs and EAs 
 
*From Prinz, A.A., Bucher, D., and Marder, E. (2004). Similar network activity from disparate circuit parameters. Nat Neurosci 7, 1345-1352 
+From Jayram Moorkanikara’s PhD Dissertation at UCI, 2010 
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Automated Parameter Tuning Framework 

• Automated parameter-tuning framework can quickly and 
efficiently tune large-scale spiking neural networks 

•  Leverage  
•  Recent progress in evolutionary algorithms. 
•  Optimization with off-the-shelf graphics processing units (GPUs) 

•  The parameter search guided by principles of 
neuroscience 
•   Biological networks adapt their responses to 

•   increase the amount of transmitted information, reduce redundancies, 
and span the stimulus space 
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Automated Parameter Framework for Tuning 
Spiking Neural Networks (SNNs) 
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Efficient Coding  
Hypothesis 
•  Fundamental idea: 

•   Sensory systems adapt their 
responses to the regularities of 
their input 

•  Increase the amount of transmitted 
information at any given time 

1.  Maximize efficiency (reduce 
redundancy) 

2.  Responses should be 
independent of one another 
(decorrelation) 

3.  A stimulus should involve only 
a small fraction of the available 
neurons (sparse) 
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Louie, K., and Glimcher, P.W. (2012). Efficient coding and the 
neural representation of value. Ann N Y Acad Sci 1251, 13-32. 



Fitness Function Based on the Efficient 
Coding Hypothesis 

•  Fitnessdecorr ensured decorrelation by forcing each neuron 
to respond maximally to different stimuli 

•  FitnessGauss required Gaussian tuning curves.  Also lead 
neurons to employ their full response range to describe 
the stimulus 

•  FitnessmaxRate limited the maximum firing rate of each 
neuron which contributes to sparsity 
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Visual Pathway in the Brain 
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Lateral 
Geniculate 

Nucleus 
(LGN) 

Primary 
Visual 
Cortex 
(V1) 

•  Sample Parameter Tuning Example for Homeostasis and STDP: 
•  Unsupervised learning of V1 simple cell receptive fields in response to 

patterned inputs. 



Receptive Fields in LGN and V1 
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K.D. Carlson, M. Richert, N. Dutt and J.L. Krichmar, “Biologically Plausible Models of Homeostasis and STDP: Stability and Learning in Spiking 
Neural Networks,”  in Proc. IJCNN 2013  



Simulated Visual Cortex Responses to 
Sinusoidal Gratings 
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K.D. Carlson, M. Richert, N. Dutt and J.L. Krichmar, “Biologically Plausible Models of Homeostasis and STDP: Stability and Learning in Spiking 
Neural Networks,”  in Proc. IJCNN 2013  



Tuning SNNs that Generate Self 
Organizing Receptive Fields (SORF) 

•  Network size 
•  4104 neurons 

•  Indirect encoding 
•  14 parameters to 

search 
•  Training phase 

•  40 sinusoidal 
orientations 
presented 

•  2400 presentations 
•  Testing phase 

•  8 sinusoidal 
orientations 
presented to the 
network 

•  Responses of the Exc 
neurons were 
evaluated using the 
ECH fitness function 
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K.D. Carlson, M. Richert, N. Dutt and J.L. Krichmar, “Biologically Plausible Models of Homeostasis and STDP: Stability and Learning in Spiking 
Neural Networks,”  in Proc. IJCNN 2013  
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•  10 SNNs in parallel 
•  Up to 40. 

•  287 EA generations 
in 127 hours. 

•  Run on a single 
NVIDIA Tesla 
M2090 

K.D. Carlson, M. Richert, N. Dutt and J.L. Krichmar, “Biologically Plausible Models of Homeostasis and STDP: Stability and Learning in Spiking 
Neural Networks,”  in Proc. IJCNN 2013  



Synaptic Weight Progression During 
Training for a High Fitness Individual 

•  Synaptic weights for the On(Off)BufferàExc connections 
•  Light regions denote strong weights, dark regions denote weak weights 
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Response Of Neurons To Sinusoidal Gratings 

•  Blue line: firing rate of simulated individual Exc group neuron 
•  Red line: ideal Gaussian tuning curve firing rate response for V1 
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Population Response After Evolution 
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•  Population decoding for diff presentation angles (70 sets of 4 exc neurons): 
•  Small black arrows: component vectors for individual neurons 
•  Blue arrow: normalized decoded population vector 
•  Red arrow: normalized ideal grating presentation vector 



Automated Parameter Tuning Framework Performance 
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K.D. Carlson, M. Richert, N. Dutt and J.L. Krichmar, “Biologically Plausible Models of Homeostasis and STDP: Stability and Learning in Spiking 
Neural Networks,”  in Proc. IJCNN 2013  



Conclusions 
•  Large-scale, complex, realistic brain simulations are necessary: 

•  For the field of neuromorphic engineering to produce results and 
applications of practical value 

•  To help computational neuroscientists develop new theories of neural 
function 

•  To address this challenge: 
•   our approach leverages 

•   the optimization capabilities of evolutionary computation 
•   exploits graphical processing unit (GPU) parallelism 

•  The efficient coding hypothesis  
•  May provide a metric for tuning networks of simulated spiking neurons 
•   May also given insights into how real brain networks process 

information and achieve homeostasis 
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Thanks! 

Questions or Comments??? 
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