
QoS-Aware Dynamic

Resource Allocation for

Spatial-Multitasking GPUs

Paula Aguilera

Katherine Morrow

Nam Sung Kim

University of Wisconsin-Madison

Outline

• QoS Applications on Multitasking GPUs

• Methodology, Platform & Applications

• GPU Resource Allocation

– Static Resource Allocation

– Dynamic Resource Allocation

• Conclusions

1/23/2014 2

GPGPU Computuation for QoS

• Many applications have QoS performance
requirements that they need to satisfy

– Frames-per-second, transmission rate, etc.

• These types of applications are also often
highly parallel

– GPUs’ large number of cores can make them an
effective compute platform for meeting QoS

• However, these applications may not run in
isolation—multitasking may be required!

– How can we best multitask a GPU to meet QoS
requirements?

1/23/2014 3

GPU Multitasking

• Each generation of GPUs has more parallel
computation capability than the previous one

– But… many GPGPU applications fail to fully utilize
the GPU resources

• SPATIAL MULTITASKING:
Divide GPU resources spatially
rather than temporally

– Allocate a subset of the GPU’s
Streaming Multiprocessors (SMs) to
each co-executing application

• How do we choose this allocation?

1/23/2014 4

2

3
GPU

1

?

Resource Allocation for QoS

• Spatially-multitask QoS applications with other
applications on the GPU

– Need to ensure each QoS application is allocated
enough resources to meet their requirements

• Goal: Allocate minimum SMs to QoS
applications to meet their requirements

• What can we do with GPU
resources “unneeded” for QoS?

– Accelerate co-executing best-effort
applications to improve performance

– Leave them idle for power savings

1/23/2014 5

2

GPU

1

Methodology

• Measure, for different execution scenarios, how

many SMs are not needed to meet QoS

– Determine effects of using these resources to

accelerate other applications vs. leaving them idle

– Examine how these effects scale with increasing (or

decreasing) QoS requirements

• Determine how to allocate the minimum number of

SMs to QoS applications to meet requirements

– Does the required allocation depend on co-executing

applications (due to memory/interconnect contention)?

– Do we need to allocate at runtime based on workload?

1/23/2014 6

Platform & Applications

• Modified GPGPU-Sim:

– Support for spatial multitasking

– NVIDIA Quadro FX 5800 (GT200 architecture)

– 30 SMs and 8 memory controllers

• Benchmarks:

– QoS: AES Decoding (AES-D), JPEG Decoding
(JPEG-D) and SHA1

– Best-effort: Image Denoising (ID), Ray Tracing
(RAY), Dirac Video Codec (DVC), Sum of
Absolute Differences (SAD), and Fractals

1/23/2014 7

Execution Scenarios

• Examine three scenarios:

– One QoS application
• Leave SMs idle to save power

– Two QoS applications

• Leave SMs idle to save power

– One QoS application +

one best-effort application
• Use extra SMs for acceleration

1/23/2014 8

Q

Q1 Q2

Q
BE

Calculating QoS

• Assume applications meet their QoS when

cooperatively multitasked with one other app

– Required QoS = work performed using 100% of

resources for 50% of simulated time

• Attempt to achieve same work using 50% or

fewer SMs for 100% of simulated time

• Also test relaxed QoS levels

– 100%, 95%, 90%, 85% and 80% of the QoS

level calculated above

1/23/2014 9

One QoS Application

1/23/2014 10

0

1

2

3

4

5

6

7

8

AES-D JPEG-D SHA1

Id
le

 S
M

s

100% 95% 90% 85% 80%

• QoS application in isolation using up to 50% of the
SMs for 100% of the time

• Calculate # SMs (out of 15) that are not needed
• Number of SMs that can be left idle increases as QoS

requirement is relaxed

Two QoS Applications

1/23/2014 11

0

2

4

6

8

10

12

AES-D JPEG-D SHA1 JPEG-D SHA1 SHA1

AES-D JPEG-D SHA1

Id
le

 S
M

s
100% 95% 90% 85% 80%

• Evaluate max # of SMs that can be disabled and still
have applications meet their QoS

Two QoS Applications

1/23/2014 12

0

2

4

6

8

10

12

AES-D JPEG-D SHA1 JPEG-D SHA1 SHA1

AES-D JPEG-D SHA1

Id
le

 S
M

s
100% 95% 90% 85% 80%

• Evaluate max # of SMs that can be disabled and still
have applications meet their QoS

• Number of idle SMs when sharing GPU not always
equal to sum of idle SMs in isolation!

Idle SM Power Savings

QoS Level Idle SMs (W) Power Gated SMs (W)

100% 2.6 6.9

95% 5.8 11.2

90% 8.8 15.8

85% 13 22.2

80% 18.1 28.6

1/23/2014 13

• Use GPUWattch to determine the average power
savings for two QoS applications when:
• Leaving the unneeded SMs idle (reducing dynamic

power vs. if those SMs were active), or…
• Power-gating the unneeded SMs

One QoS + One Best-Effort

1/23/2014 14

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

A
ES

-D

JP
EG

-D

SH
A

1

A
ES

-D

JP
EG

-D

SH
A

1

A
ES

-D

JP
EG

-D

SH
A

1

A
ES

-D

JP
EG

-D

SH
A

1

A
ES

-D

JP
EG

-D

SH
A

1

DVC Fractals ID RAY SAD

Th
ro

u
gh

p
u

t
Fa

ct
o

r

100% 95% 90% 85% 80%

• Performance increase of allocating “extra” SMs to best-
effort application (relative to cooperative multitasking)
• Average 17.5% performance increase for 100% QoS

Contention When Sharing GPU

1/23/2014 15

• Performance of an application using spatial multitasking
on the GPU depends on any co-executing applications

• Contention in shared resources (memory, interconnect)

0

5

10

15

DVC Fractals ID RAY SAD

N
e

e
d

e
d

 S
M

s

Co-Executing Application

90% 80%

of SMs Needed by SHA1 to Meet 90% and 80% QoS

Maximum Performance Loss

• Compare QoS application performance with “most
interfering” best effort application vs. in isolation

• For best results, need to allocate at runtime based
on the executing workload!

1/23/2014 16

APPLICATION MAX. PERFORMANCE
LOSS (15 SMs)

MAX. PERFORMANCE
LOSS (10 SMs)

AES-D 0.3% 0.3%

JPEG-D 16% 23.2%

SHA1 18.2% 24%

Dynamic Allocation
• Performance depends on the characteristics of

both QoS and co-executing applications

• Need runtime algorithm

– Take advantage of fact that most applications show
sub-linear speedups with # SMs

1/23/2014 17

0

100

200

300

400

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

IP
C

allocated SMs

Performance for SHA1

Dynamic Allocation

• Iterative method:

1. Allocate more than enough SMs to meet QoS

2. Measure performance

• If performance > QoS: estimate if fewer SMs
can be used. If yes, choose the middle point of
the estimation

• If performance < QoS: estimate how many more
SMs are needed

3. Change to the new # of SMs, and goto #2.

• When the extra SMs are assigned to other applications
we need to first wait for them to finish execution

 1/23/2014 18

Dynamic Allocation Example

1/23/2014 19

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

IP
C

Linear Approximation for SHA1 SM Allocation

Target QoS

[Example uses end- instead of mid-point as simplification]

Conclusion

• Spatial multitasking satisfies QoS and:

– Improves system performance (17.5%) by

allocating unused SMs to best-effort apps, or…

– Saves power (7W) by leaving them idle

• # SMs required to meet QoS depends in

part on other applications using the GPU

– Dynamic allocation is necessary

• Presented a dynamic allocation algorithm

based on linear approximation to maximize

benefit of spatial multitasking for QoS

1/23/2014 20

