

3DLAT: TSV-based 3D ICs crosstalk minimization utilizing Less Adjacent Transition Code

Qiaosha Zou

Dimin Niu

Yan Cao

Yuan Xie

The Pennsylvania State University

3D integration is a promising solution for interconnect crisis.

Source: Micron Hybrid Memory Cube

Capacitance crosstalk in TSVs
 Relatively large size of TSVs
 Coupled deep inside the substrate

Outline

Preliminaries

Backgrounds on crosstalk
 2DNAT (no adjacent transition) Code: Transition signaling and Limited Weighted Code

- 3D LAT Coding Mechanism
- Performance and power evaluation

Crosstalk in TSV arrays

- Analysis Complexity:
 - Increased number of neighbors
 - □ Each victim has 8 aggressors.
- Transition direction matters $\Box \Delta V_i = V_i(t^+) V_i(t^-)$ (0 to 1, or 1 to 0)

$$\Box \delta_{i,k} = abs(\frac{\Delta V_i - \Delta V_k}{V_{dd}})$$
(value of 0, 1, or 2)

Crosstalk in TSV arrays

- Effective crosstalk capacitance
 - $C_{eff,i} = C_L(1 + \lambda_1 \sum \delta_n + \lambda_2 \sum \delta_d)$
 - λ represents the capacitance ratio between coupling capacitance and self capacitance.
- Crosstalk classification
 - $\sum \delta_n$ can be any integer in [0, 8]
 - OC to 8C without considering diagonal TSVs
 - Add 9C and 10C for four diagonal TSVs

Previous work on 3D crosstalk

- 3D k-CAC: Crosstalk Avoidance Code (Kumar et al., DATE 2013)
 - Eliminate the transmission pattern that causes (k+1)C crosstalk.
 - □ Problems: large overhead and complexity
- ShieldUS (Chang et al., ASPDAC2013):
 - Use relatively stable data signals as shields
 - □ Problems: data mapping & unstable performance

How does 2D design handle crosstalk problem?

2D No Adjacent Transition Code

- Combine the transition signaling and the limited weighted code.
- Transition Signaling
 - □ Input bit is 1 => transition occurs
 - □ Assume signal is 10010, wire voltage is LLHHL
 - XOR previous and current wire value for input data

Input Signal 1 0 0 1 0

Limited Weighted Code & 2D NAT

- Limited Weighted Code
 Weight: number of 1s in the data
 Encode to limit the weight of each data input
- 2D NAT
 - \square No adjacent 1s are allowed in codeword

Avoidance Pattern:

H L H L H L

3D NAT is infeasible

Imagine apply 2D NAT into 3D designs...
 (assume weak coupling between diagonal TSVs)

Х	\overline{b}	Х
\overline{b}	b	\overline{b}
Х	\overline{b}	Х

b can be only 0 or 1

Codeword Cardinality (number of qualified codeword) is only 2⁵ compared to 2⁹.

Outline

Preliminaries

3D LAT Coding Mechanism

- LAT code design
- □ LAT optimization
- Heuristic CODEC design
- Performance and power evaluation

3D limited weighted LAT code

- Limit the number of 1s in adjacent nodes
 - □ Adjacent nodes include eight neighbors in the array
 - □ Target at TSV arrays with 3 rows.
 - \Box Use ω for maximum allowed weight for each 3*3 TSVs
 - \Box Limit the crosstalk within ($\omega 1$) * 2*C*
 - Worst case consideration.
 - At most ω 1 neighbors are with the opposite transition direction.

Code Cardinality Calculation

- The codeword overhead is determined by the code cardinality.
- The number of codeword should not be smaller than the number of data input $(T(\omega, N) \le 2^d)$

Lower bound of the code cardinality is used instead. Each TSV subarray has exact the same weight.

Codeword Cardinality Induction

When value of N is small, enumation is used to get the code cardinality.

For large N, inductive method is used to calculate $T(\beta, N)$, until the minimum required N is found.

ω-LAT transmission framework

- Two level of encoder
 - □ LAT encoder
 - □ Transition signaling encoder

ω -LAT coding overhead

- ω is reduced, overhead is increased
- The overhead is the upper bound
- ω=2 has large overhead, but significantly smaller than 3D CAC (335% overhead)

LAT Code Optimization

Only encode the data input that doesn't qualified.
 □ For example, 00100 doesn't need to be encoded.

Techniques:

- □ Bus Inverting
- Weight Detecting

Limitations:

- □ Timing overhead
- Detector area overhead

Comparison of baseline and optimized scheme

Data Bitwidth	Optimized		original		reduced ratio	overhead reduction
	column	overhead (%)	column	overhead (%)	$\left(\frac{T_{\omega}(d/3)}{2^d}\right)$	(%)
5	1	-40	2	20	25	60
10	3	-10	5	50	25	60
15	8	60	9	80	4.04	20
20	11	65	12	80	0.38	15
25	15	80	15	80	0.02	0

- With increased data bitwidth, the overhead reduction becomes marginal.
- The number of weight detectors increased with longer input.

Heuristic CODEC design

- No universal CODEC design due to the variation on ω.
- Option 1: Look Up Table based CODEC design.
- Option 2: Analyze the 3D LAT coding scheme.
- Two level of comparators are used in encoder
 First level: TSV subarray weight
 - \Box Second level: combination of α_1 to α_3
- Heuristic CODE design on case study
 - $\Box \omega$ =4, data input 16 bits
 - □ Data input value 1024

CODEC design case study

Codeword bitwidth is 27 and has 9 columns
 Decide ω based on the codeword cardinality.

ω	0	1	2	3	4
Cardinality	1	81	2268	24060	61398
value	1	82	2350	26410	87808

CODEC design case study

- Calculate the codeword cardinality and determine the *α* combination
- 6 combinations: (0,1,1) (1,0,1) (1,1,0) (0,0,2)
 (0,2,0) (2,0,0)
- Determine code cardinality for each combination
- Find the combination according to the cardianlity
 - \Box We choose to use (1,0,1) for value 1024.

CODEC design case study

- Determine the row position of the 1ss. $\Box k_0 * 3^0 + k_1 * 3^1 + k_2 * 3^2 + k_3 * 3^3 + k_4 * 3^4 + k_5 * 3^5$
- For 1024, the final codeword is: $\Box (k_0, k_1, k_2, k_3, k_4, k_5) = (0, 2, 2, 2, 1, 0)$

Codeword for 1024:

1	0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0	0
0	0	1	1	0	1	0	0	0

Outline

Preliminaries

3D LAT Coding Mechanism

Performance and power evaluation
 Analytical power evaluation
 Performance simulation

Power Evaluation

Analytical Power Model

$$\square P^{s} = \frac{1}{2}C_{L}V_{DD}^{2} * \Pr(trans)$$
$$\square P^{c} = C_{c}V_{DD}^{2} * \Pr(V_{k}(t^{+}) \neq V_{k+1}(t^{+})) * E_{t}$$

code	Pr(trans)	$Pr(V_k(t^+) \neq V_{k+1}(t^+))$	$E_t c(k, k+1)$
uncoded	0.5	0.5	1
ShieldUS	0.5	0.5	≤ 1
6C CAC	0.5	0.367	1
4-LAT	0.4079	0.5	0.8159

Assume λ_1 is 5.54, power consumption for uncoded cases is 8.56 $C_L V_{DD}^2$, 4-LAT is 6.98 $C_L V_{DD}^2$.

Benchmark Analysis

- Extract SPEC 2006 Benchmark memory trace and perform crosstalk class analysis
- Performance evaluation comparison with ShieldUS, 3-LAT, and ideal case.

Most data transmission are within 5C crosstalk.

Performance Evaluation

Ideal case: transmission time is flexible and determined by the crosstalk class.

- Ideal case always has the optimal performance.
- ShieldUS cannot guarantee the transmission time
- With determined value of ω , the proposed scheme can have stable performance.

Conclusion

- Due to the relatively large size and deep substrate coupling, 3D capacitive crosstalk minimization should be considered.
- ω-LAT (less adjacent transition) coding scheme is proposed to minimize crosstalk.
- The overhead is affordable with aggressive crosstalk minimization.
- Power consumption of each TSV is reduced and transmission delay can be guaranteed.

Thank you!

Q&A