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Moore’s Law Ends? 

 MOS Scaling Ends??? 
 Leakage current (static) 
 Long traffic (dynamic) 
 Reliability issues 
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Volatile  

S. E. Thompson, S. Parthasarathy，Mater. Today, Vol. 9 No. 6, pp. 20-25, 2006. 

Weisheng Zhao et al,  IEEE VLSI-SOC, 2013 



Spintronics is Emerging!  

2014/1/12 

 Non-volatility 

 3D integration 

 fast access speed  

 ultra-low power 

  

  

Completely or partially replace CMOS technology  

Weisheng Zhao et al,  IEEE VLSI-SOC, 2013 
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Spintronics Histrory 

 The origins of Spintronics can be traced back to the 
1970s [Julliere 1975] 

 The discovery of spin valve or GMR in 1988 (Nobel 
Prize Physics 2007 for A. Fert and P. A. Grunberg)  

 The discovery of MTJ and STT in 1995 [Moodera et 
al. ,Miyazaki et al., and Berger and Slonczewski] 

  The spin-valve sensor was firstly commercialized 
by IBM in 1997 
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STT-MTJ 

7 

Stochastic switching  TMR ( ) /AP P PR R R= −

C. Chappert, A. Fert and F. Dau, Nature Mater., vol. 6, pp. 813-823, 2007. W. S. Zhao, et al, Microelectron. Reliab., vol. 52, pp. 1848-1852, 2012. 



STT-MTJ modeling 

 Critical current 
 

 Precessional switching region,  
 
 

 Thermal activation region, 
 
 

 Dynamic reversal region, no explicit formulas 
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STT-MTJ modeling (Cont.) 
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 Verilog-A language  
 STMicroelectronics 40 nm design-kit 
 DC and transient simulation 

Y. Zhang et al., IEEE Trans. Electron Devices, vol. 59, no. 3, pp.819-826, 2011. 



Reliability issues 

 STT stochastic switching—write errors 
 TMR reduction—read errors 
 Read disturbance—read errors 
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W. S. Zhao, et al, Microelectron. Reliab., vol. 52, pp. 1848-1852, 2012. S.Yuasa et al, Nat. Mat. (2004) 
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Magneto RAM (MRAM)  

 Mainly based on the hybrid structure, i.e. MTJ+MOS 
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Field driven 

FIMS-MRAM  

STT driven 

STT-MRAM  

Thermal Assisted 

TA-FIMS-MRAM 

Thermal Assisted 

TA-STT-MRAM   



MRAM (Cont.) 

 MRAM uses MTJ as non-volatile storage element 
 Read based on the TMR ratio of MTJ 
 ITRS reported that STT-MRAM is one of the most promising 

candidates for the next generation non-volatile memory. 
 Many prototypes or small-scale chips have been proposed or 

commercialized in markets currently 
 Intrinsic anti-radiation, promising for aerospace applications 
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Racetrack Memory  

 Based on domain wall (DW) motion 
 With MTJ as write and read heads 
 Ultra-high storage density and low power operation 
 One of the key challenges to build RM is to avoid 

any pinning defects in the magnetic strips 
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Yue Zhang et al., JAP, vol.111, 093925, 2012 



Advanced Spin-based Memories  

 Voltage-Controlled (DC) MRAM or DW motion 
 Spin-Orbit Coupling memory devices 
 Further reduce programming power VS STT 
 Far away for practical applications 

15 Na Lei et al., Nature Communications, vol.4, 1378, 2013. M.Miron et al, Nature 476,189 (2011) Y.Kim et al, arXiv:1305.4085 
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Hybrid MTJ/CMOS Logic Circuits 

 Mainly based on the logic-in-memory structure 
 Inputs partly volatile，partly non-volatile 
 3D integration shortens traffic delay and power 
 Low power and high speed 
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Erya Deng et al., IEEE Trans. Magnetics,vol.49, pp.4982-4987, 2013 



 Domain Wall based Logics 

 All the data inputs are stored in non-volatile states 
 Area, power, delay overheads 

 Same challenges as racetrack memory  
 Defects in magnetic nanowires 
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H-P Trinh, et al., IEEE . Circuits and Systems I, vol.60, pp.1469-1477, 2013.  



Spin-Transistors  

 Concept has been predicted early in the 1990s, but it was 
experimentally developed recently 

 Most critical challenge for spin transistors is the “magic” 
material for the spin transport channel 

 Graphene has been proved generally the potentiality and 
capability for the channel material 

 Spin-MOSFET and Spin-FET 
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Sugahara S, Nitta J.Proceedings of the IEEE, 2010, 98(12): 2124-2154. 



All-Spin Logic and Nano-Magnetic Logic  

 Uses nano-magnets as digital spin capacitors to store data 
and spin to communicate, realizing logic gates based on the 
spin majority evaluation 

 Ultra-low power and full spin system 
 Challenges for material, fabrication and controllability 

20 

Majority gate All spin full adder 

B. Behin-Aein et al, Nature nanotech, Vol. 5, pp. 266-270, 2010. S. Breitkreutz, et al., IEEE Trans. on Magnetics, vol.49, pp.4464-4467, 2013. 



Spin Wave Logic  

 It uses magnetic films as spin conduit of wave propagation, 
information can be coded into a phase or amplitude of the 
propagating spin wave 

 Challenges: Spin wave amplitude decay and low spin wave 
phase velocity 
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T. Schneider et al, Appl. Phys. Letters, vol.92, pp. 022505, 2008. 
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Normally-Off Computing Systems 

 Non-volatile storage: no static power 
 “Instant on/off” capability 
 Normally-Off when the CPU is in standby state 
 Normally-On after power is reset 
 Ultra-low power computing system 
 

 

  

  

Full use Partly use Idle state 

S.H. Kang, Non-volatile Memories Workshop, 2010. H. Yoda, et alProcs. of IEDM, pp.11.3.1, 2012. Weisheng Zhao et al., IEEE VLSI-SOC, 2013 



Dynamic Reconfigurable Systems  

 FPGA with SRAM to store the configuration 
 Low power efficiency and logic density 
 Challenge for dynamically reconfigurable or in run-time 

 Spin-based memory as configuration 
 STT-MRAM, TA-MRAM and racetrack memory etc 

 

W.S. Zhao, et al., IEEE Trans. on Magnetics, vol.47, pp.2966-2969, 2011 W.S. Zhao, et al., ACM Trans. Reconfigurable Technology and Systems, vol.2, 2009. 



Neuromorphic Systems  

 Circuits and systems that work analogously to the brain 
 Spintronics devices and memristor are the most promising 

candidates as synapse in neuromorphic systems currently 
 Ultra-low power consumption 
 Artificial intelligence 
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M. Sharad et al., IEEE Trans. Nano., Vol. 11, pp. 843-853, 2012. K. Roy et al., IEEE ISLPED, pp.139-142, 2013. 



Conclusion and perspectives 

 Overview of spin-based devices and circuits, their challenges 
and merits in current applications  

 Emerging novel computing paradigms and architectures 
beyongd Von-Neumann architecture 

 In the short term (i.e., 5-10 years), STT-MTJ/CMOS hybrid 
memory and logic could be the major candidates to achieve 
the commercial steps.  

 In the long term (i.e., 10-20 years), there isn’t any evidence 
for any other devices or structures (e.g., Graphene based 
devices) to become the mainstream solution. 
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Thanks for your attention! 
Questions?? 
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