

Architectural Aspects in Design and Analysis of SOTbased Memories

Rajendra Bishnoi, Mojtaba Ebrahimi, Fabian Oboril & Mehdi Tahoori

INSTITUTE OF COMPUTER ENGINEERING (ITEC) - CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

Outline

Motivation

SOT based MRAM

- STT-MRAM & Limitations
- Basics of SOT-MRAM
- Simulation tool flow

Results

- For various memory technologies
- System-level

Karlsruhe Institute of Technology

Outline

Motivation

SOT based MRAM

- STT-MRAM & Limitations
- Basics of SOT-MRAM
- Simulation tool flow

Results

- For various memory technologies
- System-level

Memory Hierarchy

High Capacity

A Universal Memory Required to overcome these limitations
 Non Volatile Magnetic RAM is promising candidate

- Low Switching Time
- Avoid Read Disturb

STT-MRAM has potential to become universal memory technology

- However, obstacles are
 - High write current & time
 - "Read Disturb"
- Addressed using Spin Orbit Torque (SOT)

Karlsruhe Institute of Technology

Outline

Motivation

SOT based MRAM

- STT-MRAM & Limitations
- Basics of SOT-MRAM
- Simulation tool flow
- Results
 - For various memory technologies
 - System-level

Basics of Spin Transfer Torque (STT)

Parallel Magnetisation (P) Low Resistance

Anti- Parallel Magnetisation (AP) High Resistance

- Two ferromagnetic layers seperated by a oxide barrier layer
- Magnetic Tunneling Junction (MTJ) Cell is a storing device
- Value stored as a resistance state

Bit-cell using STT based MTJ cell

Read & Write

Current Path

- Bit-Line
- Word-Line
- Source-Line
- Read current is unidirectional
- Write current is bidirectional
- Possible "Read Disturb"
 - Same path for read and write

Bit-Line

Source-Line

Word-Line

Merits & Demerits of STT

- Merits:
 - High Density
 - Non-Volatility
 - Scalability
 - CMOS Compability

- Low Read Latency
- High Endurance
- High Retention
- Radiation Immune

- Demerits:
 - High Write Power
 - High Write Latency

- Aditional Layer requires
- Read Disturb

In-Plane Vs Perpendicular Anisotropy

Parameters	In-Plane Magnetic Anisotropy	Perpendicular Magnetic Anisotropy		
Diagram				
Ratio of critical switching current to thermal stability, $\frac{I_C}{\Delta}$	$ \begin{array}{l} \displaystyle \frac{\alpha}{\eta} \times \left(1 + \frac{H_d}{2H_k}\right) \\ & \text{where, } \alpha \text{= damping constant,} \\ \displaystyle \eta \text{=} \text{STT efficiency, } H_d \text{ =} \\ & \text{demagnetization field, } H_k \text{=} \text{in-plane} \\ & \text{anisotropy field} \end{array} $	$\frac{\alpha}{\eta}$		
switching current	High	Low		
switching time	More	Less		
 Perpendicular magne Low switching current Less switching time "Read Disturb" still re 	enc anisotropy mains challenge			

Mehdi Tahoori --- Architectural Aspects in Design and Analysis of SOT-MRAM

Spin Orbit Torque

- Separate read and write current paths
 - One additional terminal
 - No read disturb
 - Need not to maintain ratio of I_{Read}/I_{Write}
- Less current required to flip due to parallel magnetization

Fast switching

STT-MRAM VS SOT-MRAM

Parameter	STT-MRAM	SOT-MRAM	
Bit-cell Terminals (1T1MTJ type)	3	4	
Access Transistor	8F	2F	
Current (uA)	750	100	
Write Current Period (ns)	11	0.3	
Read Disturb	High Probability	Almost Nil	
Read Energy (pJ)	1.8	1.8	
Write Energy (pJ)	3.9 (reset)/3.4(set)	0.1	
Switching Behavior	Asymmetrical	Almost Symmetrical	
Magnetic Anisotropy	In-Plane	Perpendicular	

Tool Simulation Flow

Basic Memory Architecture

Word Line 1 (WL₁)

bit-cell bit-cell bit-cell ... WL₂ bit-cell bit-cell bit-cell ... WL₃ bit-cell bit-cell bit-cell ... ٠ ٠ ٠ ٠ ٠ ٠ ٠ WL bit-cell bit-cell bit-cell ... Read Write Write Read Write Read Source Source Source Line Line Line Line Line Line Line Line Line

Word-line driv the access transistor of bitcell

- Write Enable =1, for write operation
- Write Enable =0, for read operation

Simulation models

STT-MTJ

SPICE modelling framework presented in [W. Guo, JAP-2010]

SOT-MTJ

Compact Verilog-A framework presented in [K. Jabeur, IJESE-2013]

CMOS

General purpose TSMC 65nm models.

Mehdi Tahoori --- Architectural Aspects in Design and Analysis of SOT-MRAM

ASPDAC-2014

Mehdi Tahoori --- Architectural Aspects in Design and Analysis of SOT-MRAM

Input & Output Parameters

Outline

Motivation

SOT based MRAM

- STT-MRAM & Limitations
- Basics of SOT-MRAM
- Simulation tool flow

Results

- For various memory technologies
- System-level

Comparison of various Memory Technologies

Parameters	SRAM	NAND FLASH	STT- MRAM	SOT- MRAM	PC- RAM	R- RAM
Area [mm ²]	2.8	0.2	1.6	1.5	0.3	0.7
Read Latency [ns]	2.2	565	1.2	1.13	0.6	1.2
Write Latency [ns]	2.0	2×10^{5}	11.2	1.4	150	21
Read Energy [pJ]	587	3921	260	247	363	193
Write Energy [pJ]	355	6902	2337	334	63670	592
Leakage [mW]	932	77	387	254	153	115

Values are extracted using NVSim for

- 512 Kbyte capacity
- Latency optimization

Area Comparison for various memory sizes

Mehdi Tahoori --- Architectural Aspects in Design and Analysis of SOT-MRAM

Read & Write Latency Comparison

STT & SOT, remain almost flat with capacity increase

Energy Comparison

SOT has almost same read & write access energy

Leakage Comparisons

Mehdi Tahoori --- Architectural Aspects in Design and Analysis of SOT-MRAM

ASPDAC-2014

System-Level Evaluation

Configuration details for Experiments:

- Processor : single core, 3 GHz
- L1-Cache : 32 Kbyte with 64B Data Width
- L2-Cache : 512 Kbyte with 64B Data Width
- Application (MiBench):
 - BasicMath, BitCnt, Qsort, Dijkstra, Patricia, StrSearch, SHA, CRC, FFT

Comparisons with Various Cache conf.

SRAM+SOT is best area combination. SOT+SOT is best energy configuration

Benchmark Analysis

	Runtime [ms]				Energy [mJ]			
	SRAM+SRAM	SRAM+STT	SRAM+SOT	SOT+SOT	SRAM+SRAM	SRAM+STT	SRAM+SOT	SOT+SOT
BasicMath	61.4	59.8	59.8	60.5	66.4	31.6	23.6	22.8
BitCount	130.1	130.1	130.1	130.1	133.8	63.0	45.6	40.4
CRC	998.8	998.8	998.8	1025.5	1075	531.5	398.1	395.7
Dijkstra	62.7	62.4	62.4	62.6	75.5	41.2	32.9	36.8
FFT	176.1	175.4	175.3	176.1	191.9	95.5	72	71.6
Patricia	49.1	46.7	46.7	47.6	54.6	25.8	19.5	19.4
QSort	35.2	34.9	34.9	34.9	36.7	17.6	12.7	11.6
SHA	23.3	23.3	23.3	23.3	26.1	13.4	10.3	10.7
StringSearch	1.5	1.5	1.5	1.5	1.7	0.9	0.7	0.7
Average	170.9 (100%)	170.0 (99 %)	170.0 (99 %)	173.3 (101 %)	184.6 (100%)	91.2 (49%)	68.4 (37 %)	67.7 (36 %)
								L

SOT only solution is best for low power.
 For runtime, the best combination is SRAM+SOT.

Outline

Motivation

SOT based MRAM

- STT-MRAM & Limitations
- Basics of SOT-MRAM
- Simulation tool flow

Results

- For various memory technologies
- System-level

- Developed hybrid memory architecture based on SOT-MRAM
 - A cell-level information is extracted using SPICE simulations
 - NVSim tool is explored to estimate the design data
 - Many applications run using GEM5 simulator
- SOT is the best solution for low power
- Overall best is hybrid memory architecture SRAM+SOT