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Motivation

Real-time system at runtime

Why real-time system needs to be monitored?

All inputs are assumed as the design specifications

The increasing complexity of system

Unexpected runtime behaviors happen

Monitor is used to guarantee the system runtime behaviors

What monitors do?

System events are monitored

Violation is reported by the monitor
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l-repetitive function (Neukirchner et.al, 2012)

Contributions

Analyzed the differences of dynamic counters and l-repetitive
function

Developed a new approach to apply dynamic counters to
monitor periodic-burst events

Prototyped hardware implementations on FPGA and
presented FPGA resource usage
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Arrival Curve (Modular Performance Analysis)

Arrival curve: Event stream model,

αl(t − s) ≤ R[s, t) ≤
αu(t − s), ∀t ≥ s ≥ 0, where

R[s, t) denote the number of events

in the time interval s ≤ τ < t.

System view of the M-JPEG

encoder

The corresponding RTC-MPA model
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Distance Function (Compositional Performance Analysis)

Minimum/maximum distance function

The minimum distance function dmin(n) specifies the minimum distance

between n + 1 consecutive events in an event stream.

The maximum distance function dmin(n) specifies the maximum distance

between n + 1 consecutive events in an event stream.

An example: periodic events with jitter

Arrival Curve

(a) Upper Arrival Curves : αu(∆) = b∆+J
δ c

(b) Lower Arrival Curves : αl(∆) = max{0, b∆−J
δ c

Distance Function

(a) Minimum Distance Functions : dmin(n) = max{0, n · δ − J}
(b) Maximum Distance Functions : dmax(n) = n · δ + J
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Dynamic counter

Assumption

Any monotonous and time-invariant arrival curve can be conservatively
approximated as the minimum on a set of staircase functions with the
form αu

i (∆) = Nu
i + b∆

δi
c.

∀∆ ∈ R≥0 : αu(∆) ≥ min
i=1..n

(αu
i (∆))

Method: one dynamic counter is responsible for monitoring
one staircase function

DC1 ↔ α1

DC2 ↔ α2

DC3 ↔ α3

min(DC1,DC2,DC3) ↔
min(α1, α2, α3)
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l-repetitive function

Definition
A l-repetitive function is a special minimum distance function that

satisfies: d(n) =

dn(given), n ≤ l ,

max
ω∈[1,l ]

(d(ω) + d(n − ω)), n > l .

Method: by constructing l-repetitive function, only the arrival
time of most recent l events needs to be kept.

current time - trace buffer[1] < d1

current time - trace buffer[2] < d2

current time - trace buffer[3] < d3

current time - trace buffer[4] < d4
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Standard arrival events (Richter et al., 2003)

Periodic events, Sporadic events, Periodic events with
jitter,Periodic burst events.
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Periodic events & Sporadic events

1 Periodic events

Arrival Curve: αu(∆) = d∆
δ e, only needs one dynamic counter

Minimum Distance Function: d(n) = n · δ, l = 1.

2 Sporadic events

Arrival Curve: αu(∆) = d ∆
d− e, only needs one dynamic counter

Minimum Distance Function: d(n) = n · d−, l = 1.
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Periodic events with jitter

Definition

1 Arrival Curve: α(∆) = d∆+J
δ e = N + b∆+J′

δ c, (0 < J ′ < δ)

2 dmin(n) = max{0, n · δ − J}
When J is greater than δ, an initial burst N happens.
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Periodic events with jitter

Definition

1 Arrival Curve: α(∆) = d∆+J
δ e = N + b∆+J′

δ c, (0 < J ′ < δ)

2 dmin(n) = max{0, n · δ − J}
When J is greater than δ, an initial burst N happens.

The jitter always exist when using dynamic counters or
l -repetitive function

1 Only one dynamic counter

2 l = 1 for l-repetitive function
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Periodic burst events

0

1
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3
b
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#Events

(b− 1)d 2δδ ∆

1

Definition

αu(∆) = b∆
δ cb + min(d∆−d∆

δ eb
d e, b)

where d is the minimum timing

separation, b is the maximum events

within an interval δ.

Monitoring method

1 l-repetitive function: l = b

2 dynamic counters: ?
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Dynamic counters

Periodic burst is equivalent to a staircase function with a
period d , and the constraint of b staircase functions with a
period of δ.
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A case study of monitoring periodic burst by dynamic
counters

Periodic burst is equivalent to a staircase function with a period d , and

the constraint of b staircase functions with a period of δ.

A case simulation: b = 6, δ = 180, and d = 20
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Complex arrival curve of Type 1

Arrival curve is the minimum of a set of staircase functions, i.e.,

αu = min
i=1:n
{αu

i }, where αi = Nu
i + b∆

δi
c (Nu

i < Nu
i+1, δi < δi+1)

1 Dynamic counters: n counters

2 l-repetitive function: ?
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For l-repetitive function

1 Assume the repetitive segment is αg
l that is given in the

offline analysis. αl(∆) =

{
αg
l (∆)(given), if ∆ ≤ dl ,

αg
l (∆− k · dl), if ∆ > dl .

2 lim
∆=+∞

{ min
i=1..n

{αi}(∆)− αl(∆)} = Nu
x + b ∆

δmax
c − ∆

dl
l ≥ 0. ⇒

dl ≥ l · δmax .
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Complex arrival curve of Type 1
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For l-repetitive function

1 Error percent (EP): EP(∆) =
∫ ∆

0 (αu(t)−αa(t))dt∫ ∆
0 αu(t)dt

.
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Complex arrival curve of Type 2

Arrival curve is segmentally repetitive, and each segment is sub-additive,

i.e., αl(∆) =

{
αg
l (∆)(given), if ∆ ≤ dl ,

αg
l (∆− k · dl), if ∆ > dl .

1 Dynamic counters: ?

2 l-repetitive function: l
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Complex arrival curve of Type 2
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For dynamic counters

1 Assume a set of staircase functions ( min
i=1..n

{αi},
αi = Nu

i + b∆
δi
c) is used to approximate αl , where

δmax = max
i=1..n

{δi}.

2 lim
∆=+∞

{ min
i=1..n

{αl(∆)− αi}(∆)} = ∆
dl
l − Nu

x − b ∆
δmax
c ≥ 0 ⇒

dl <= l · δmax .
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A case study

Specifications

Input Events
I1: periodic (P = 60ms)
I2: periodic (P = 5ms)
I3: periodic (P = [60..110]ms)

Execution times T1: 35ms, T2: 2ms, T3: 4ms, T4: 12ms
scheduling
parameters

priority T1: high, priority T2: low
priority T3: low, priority T4: high

Arrival curve in Monitor 1 Arrival curve in Monitor 2
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Setup

Prototype both approaches in ALTERA Cyclone III EP3C120F780

Processor frequency: 50 MHz

Timer bits: 16 bit
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FPGA Resource

Resource usage with the number of dynamic counters or l in l-repetitive
function
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FPGA Resource

Resource usage with the length of repetitive segment
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Summary

1 Analyzed the difference of dynamic counters monitoring and
l-repetitive function monitoring by using standard arrival
curves, and two typical complex arrival curves.

2 Developed a new monitoring scheme for dynamic counters to
monitor periodic burst events

3 Prototyped the two monitoring approaches in FPGA, and
found resource overhead is more sensitive to the number of
dynamic counters, and not sensitive to the length of one
repetitive segment.
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